Abstract
The deposition of uniform, reproducible and compact Sb2S3 thin films were obtained by chemical bath deposition using tartaric acid as a complexing agent. It was found that the thickness of the films increases with the pH of the solution, reaching values of 130 and 170 nm for pH values of 9.5 and 10, respectively. XRD, as well as Raman analysis, showed amorphous Sb2S3 films formed directly from the chemical bath, which crystallized into stibnite after a thermal treatment in N2 with crystallite sizes between 31 and 39 nm. On the other hand, the optical band gap of the Sb2S3 films decreased with an increase in pH, with values of 1.82–2.03 eV for the crystalline ones. An n-type photo-conductivity of 10-6 Ω-1 cm-1 was obtained for the heated films. The evaluation of these films for solar cell applications using CdS as the window layer gave a Voc of 656 mV and a Jsc of 2.66 mA/cm2 under AM1.5G radiation.
Similar content being viewed by others
References
J. Escorcia-García, M.T.S. Nair, and P.K. Nair, Thin Solid Films 569, 28–34 (2014).
O. Madelung, Data in Science Technology: Semiconductors Other Than Group IV Elements and III-V Compounds (Springer-Verlag, Berlin, 1992) p. 64.
R. González-Lúa, J. Escorcia García, D. Pérez-Martínez, M.T.S. Nair, J. Campos, and P.K. Nair, ECS J. Solid State Sci. Technol. 4, Q3-Q16 (2015).
S. Qiao, J. Liu, Z.Q. Li, S.F. Wang, and G.S. Fu, Opt. Express 25, 19583–19594 (2017).
X. Ma, J. Zhong, M. Li, J. Chen, Y. Zhang, S. Wu, X. Gao, X. Lu, J.-M. Liu, and H. Liu, Solar Energy 133, 103–110 (2016).
S.-J. Moon, Y. Itzhaik, J.-H. Yum, S.M. Zakeeruddin, G. Hodes, and M. Grätzel, J. Phys. Chem. Lett. 1, 1524–1527 (2010).
L. Zheng, K. Jiang, J. Huang, Y. Zhang, B. Bao, X. Zhao, H. Wang, B. Guan, L.M. Yang, and Y. Song, J. Mater. Chem. A 5, 4791–4796 (2017).
A. Dargat, D. Mencaragliat, C. Longeaud, T.J. Savenije, B. O’Regan, S. Bourdais, T. Muto, B. Delatouche, and G. Dennler, J. Phys. Chem. C 117, 20525–20530 (2013).
S. Messina, M.T.S. Nair, and P.K. Nair, Thin Solid Films 515, 5777 (2007).
R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 78, 385–392 (2002).
J. Cheng, D.B. Fan, H. Wang, B.W. Liu, Y.C. Zhang, and H. Yan, Semicond. Sci. Technol. 18, 656–679 (2003).
S.R. Gadakh and C.H. Bhosale, Mater. Chem. Phys. 78, 367 (2002).
R. K. Iyer, S.G. Deshpande, and G.S. Rao, J. Inorg. Nucl. Chem. 34, 3351–3356 (1972).
R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 82, 347 (2003).
R.G. Avilez-Garcia, C.A. Meza-Avendaño, M. Pal, F. Paraguay, and N.R. Mathews, Mater. Sci. Semicond. Process. 44, 91–100 (2016).
R.G. Sotelo-Marquina, T.G. Sanchez, N.R. Mathews, and X. Mathew, Mater. Res. Bull. 90, 285–294 (2017).
R. Parize, A. Katerski, I. Gromyko, L. Repenne, H. Roussel, E. Kärber, E. Appert, M. Krunks, and V. Consonni, J. Phys. Chem. C 121, 9672–9680 (2017).
Y.C. Cheng, C.Q. Jin, F. Gao, X.L. Wu, W. Zhong, S.H. Li, and P.K. Chu, J. Appl. Phys. 106, 123505 (2009).
D.K. Schröder, Semiconductor Metal and Device Characterization (Wiley, New York, 1990) p. 597.
M.I. Medina-Montes, Z. Montiel-González, N.R. Mathews, and X. Mathew, J. Phys. Chem. Solids 111, 182–189 (2017).
M. Hädrich, C. Kraft, H. Metzner, U. Reislöhner, C. Löffler, and W. Witthuhn, Phys. Status Solidi C 6, 1257 (2009).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Escorcia-García, J., Domínguez-Díaz, M., Hernández-Granados, A. et al. Antimony Sulfide Thin Films Obtained by Chemical Bath Deposition using Tartaric Acid as Complexing Agent. MRS Advances 3, 3307–3313 (2018). https://doi.org/10.1557/adv.2018.551
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.551