Skip to main content
Log in

Antimony Sulfide Thin Films Obtained by Chemical Bath Deposition using Tartaric Acid as Complexing Agent

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The deposition of uniform, reproducible and compact Sb2S3 thin films were obtained by chemical bath deposition using tartaric acid as a complexing agent. It was found that the thickness of the films increases with the pH of the solution, reaching values of 130 and 170 nm for pH values of 9.5 and 10, respectively. XRD, as well as Raman analysis, showed amorphous Sb2S3 films formed directly from the chemical bath, which crystallized into stibnite after a thermal treatment in N2 with crystallite sizes between 31 and 39 nm. On the other hand, the optical band gap of the Sb2S3 films decreased with an increase in pH, with values of 1.82–2.03 eV for the crystalline ones. An n-type photo-conductivity of 10-6 Ω-1 cm-1 was obtained for the heated films. The evaluation of these films for solar cell applications using CdS as the window layer gave a Voc of 656 mV and a Jsc of 2.66 mA/cm2 under AM1.5G radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Escorcia-García, M.T.S. Nair, and P.K. Nair, Thin Solid Films 569, 28–34 (2014).

    Article  Google Scholar 

  2. O. Madelung, Data in Science Technology: Semiconductors Other Than Group IV Elements and III-V Compounds (Springer-Verlag, Berlin, 1992) p. 64.

    Google Scholar 

  3. R. González-Lúa, J. Escorcia García, D. Pérez-Martínez, M.T.S. Nair, J. Campos, and P.K. Nair, ECS J. Solid State Sci. Technol. 4, Q3-Q16 (2015).

    Article  Google Scholar 

  4. S. Qiao, J. Liu, Z.Q. Li, S.F. Wang, and G.S. Fu, Opt. Express 25, 19583–19594 (2017).

    Article  CAS  Google Scholar 

  5. X. Ma, J. Zhong, M. Li, J. Chen, Y. Zhang, S. Wu, X. Gao, X. Lu, J.-M. Liu, and H. Liu, Solar Energy 133, 103–110 (2016).

    Article  CAS  Google Scholar 

  6. S.-J. Moon, Y. Itzhaik, J.-H. Yum, S.M. Zakeeruddin, G. Hodes, and M. Grätzel, J. Phys. Chem. Lett. 1, 1524–1527 (2010).

    Article  CAS  Google Scholar 

  7. L. Zheng, K. Jiang, J. Huang, Y. Zhang, B. Bao, X. Zhao, H. Wang, B. Guan, L.M. Yang, and Y. Song, J. Mater. Chem. A 5, 4791–4796 (2017).

    Article  CAS  Google Scholar 

  8. A. Dargat, D. Mencaragliat, C. Longeaud, T.J. Savenije, B. O’Regan, S. Bourdais, T. Muto, B. Delatouche, and G. Dennler, J. Phys. Chem. C 117, 20525–20530 (2013).

    Article  Google Scholar 

  9. S. Messina, M.T.S. Nair, and P.K. Nair, Thin Solid Films 515, 5777 (2007).

    Article  CAS  Google Scholar 

  10. R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 78, 385–392 (2002).

    Article  Google Scholar 

  11. J. Cheng, D.B. Fan, H. Wang, B.W. Liu, Y.C. Zhang, and H. Yan, Semicond. Sci. Technol. 18, 656–679 (2003).

    Article  Google Scholar 

  12. S.R. Gadakh and C.H. Bhosale, Mater. Chem. Phys. 78, 367 (2002).

    Article  Google Scholar 

  13. R. K. Iyer, S.G. Deshpande, and G.S. Rao, J. Inorg. Nucl. Chem. 34, 3351–3356 (1972).

    Article  CAS  Google Scholar 

  14. R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 82, 347 (2003).

    Article  CAS  Google Scholar 

  15. R.G. Avilez-Garcia, C.A. Meza-Avendaño, M. Pal, F. Paraguay, and N.R. Mathews, Mater. Sci. Semicond. Process. 44, 91–100 (2016).

    Article  CAS  Google Scholar 

  16. R.G. Sotelo-Marquina, T.G. Sanchez, N.R. Mathews, and X. Mathew, Mater. Res. Bull. 90, 285–294 (2017).

    Article  CAS  Google Scholar 

  17. R. Parize, A. Katerski, I. Gromyko, L. Repenne, H. Roussel, E. Kärber, E. Appert, M. Krunks, and V. Consonni, J. Phys. Chem. C 121, 9672–9680 (2017).

    Article  CAS  Google Scholar 

  18. Y.C. Cheng, C.Q. Jin, F. Gao, X.L. Wu, W. Zhong, S.H. Li, and P.K. Chu, J. Appl. Phys. 106, 123505 (2009).

    Article  Google Scholar 

  19. D.K. Schröder, Semiconductor Metal and Device Characterization (Wiley, New York, 1990) p. 597.

    Google Scholar 

  20. M.I. Medina-Montes, Z. Montiel-González, N.R. Mathews, and X. Mathew, J. Phys. Chem. Solids 111, 182–189 (2017).

    Article  CAS  Google Scholar 

  21. M. Hädrich, C. Kraft, H. Metzner, U. Reislöhner, C. Löffler, and W. Witthuhn, Phys. Status Solidi C 6, 1257 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escorcia-García, J., Domínguez-Díaz, M., Hernández-Granados, A. et al. Antimony Sulfide Thin Films Obtained by Chemical Bath Deposition using Tartaric Acid as Complexing Agent. MRS Advances 3, 3307–3313 (2018). https://doi.org/10.1557/adv.2018.551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.551

Navigation