Skip to main content
Log in

Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Coupling superconductors to quantum Hall edge states is the subject of intense investigation as part of the ongoing search for non-abelian excitations. Our group has previously observed supercurrents of hundreds of picoamperes in graphene Josephson junctions in the quantum Hall regime. One of the explanations of this phenomenon involves the coupling of an electron edge state on one side of the junction to a hole edge state on the opposite side. In our previous samples, these states are separated by several microns. Here, a narrow trench perpendicular to the contacts creates counterpropagating quantum Hall edge channels tens of nanometres from each other. Transport measurements demonstrate a change in the low-field Fraunhofer interference pattern for trench devices and show a supercurrent in both trench and reference junctions in the quantum Hall regime. The trench junctions show no enhancement of quantum Hall supercurrent and an unexpected supercurrent periodicity with applied field, suggesting the need for further optimization of device parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alicea, Rep. Prog. Phys. 75 7 (2012).

    Article  Google Scholar 

  2. R.S.K. Mong, D.J. Clarke, J. Alicea, N.H. Lindner, P. Fendley, C. Nayak, Y. Oreg, A. Stern, E. Berg, K. Shtengel, and M.P.A. Fisher, Phys. Rev. X 4 011036 (2014).

    Google Scholar 

  3. P. San-Jose, J.L. Lado, R. Aguado, F. Guinea, and J. Fernández-Rossier, Phys. Rev. X 5 041041 (2015).

    Google Scholar 

  4. V.E. Calado, S. Goswami, G. Nanda, M. Diez, A.R. Akhmerov, K. Watanabe, T. Taniguchi, T.M. Klapwijk, and L.M.K. Vandersypen, Nat. Nanotechnol.10 761–764 (2015).

    Article  CAS  Google Scholar 

  5. M.B. Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods, K.Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance, Nat. Phys. 12, 318–322 (2015).

    Article  Google Scholar 

  6. Z. Wan, A. Kazakov, M.J. Manfra, L.N. Pfeiffer, K.W. West, and L.P. Rokhinson, Nat. Comm. 6 (2015).

  7. G.H. Lee, K.F. Huang, D.K. Efetov, D.S. Wei, S. Hart, T. Taniguchi, K. Watanabe, A. Yacoby, and P. Kim, Nature Physics 13 693–698 (2017).

    Article  CAS  Google Scholar 

  8. G.H. Park, M. Kim, K. Watanabe, T. Taniguchi, and H.J. Lee, Sci. Rep. 7 (2017).

  9. F. Amet, C.T. Ke, I.V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R.S. Deacon, M Yamamoto, Y. Bomze, S. Tarucha, and G. Finkelstein, Science 352, 966–969 (2016).

    Article  CAS  Google Scholar 

  10. A.W. Draelos, M.T. Wei, A. Seredinski, C.T. Ke, Y. Mehta, R. Chamberlain, K. Watanabe, S. Tarucha, I.V. Borzenets, F. Amet, and G. Finkelstein, J. Low Temp. Phys. (2018).

  11. A. Ma, and A.Y. Zyuzin, Europhys. Lett. 21 (1993).

  12. J.A.M. van Ostaay, A.R. Akhmerov, and C.W.J Beenakker, Phys. Rev. B 83, 195441 (2011).

    Article  Google Scholar 

  13. N.H. Lindner, E. Berg, G. Rafael, and A. Stern, Phys. Rev. X 2 041002 (2012).

    Google Scholar 

  14. D.J. Clarke, J. Alicea, and K. Shtengel, Nat. Commun. 4 1348 (2013).

    Article  Google Scholar 

  15. X.L. Huang, and Y.V. Nazarov, Phys. Rev. Lett. 118 177001 (2017).

    Article  Google Scholar 

  16. Y.V. Nazarov and Y.M. Blanter. Quantum Transport: Introduction to Nanoscience (Cambridge University Press, UK 2009) pp. 103–105.

    Book  Google Scholar 

  17. I.V. Borzenets, F. Amet, C.T. Ke, A.W. Draelos, M.T. Wei, A. Seredinski, K. Watanabe, T. Taniguchi, Y. Bomze, M. Yamamoto, S. Tarucha, and G. Finkelstein, Phys. Rev. Lett. 117, 237002 (2016).

    Article  CAS  Google Scholar 

  18. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, and C.R. Dean, Science 342 6158 (2013).

    Google Scholar 

  19. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97 187401 (2006).

    Article  CAS  Google Scholar 

  20. S. Grenadier, J. Li, J. Lin, and H. Jiang, J. Vac. Sci. Technol. 31 061517 (2013).

    Article  Google Scholar 

  21. M.C. Lemme, D.C. Bell, J.R. Williams, L.A. Stern, B.W.H. Baugher, P. Jarillo-Herrero, and C.M. Marcus, ACS Nano 3 (9) (2009).

  22. G. Nanda, G. Hlawacek, G. Srijit, K. Watanabe, T. Taniguchi, and P.F.A. Alkemade, Carbon 119 (2017).

  23. C.T. Ke, I.V. Borzenets, A.W. Draelos, F. Amet, Y. Bomze, G. Jones, M. Craciun, S. Russo, M. Yamamoto, S. Tarucha, and G. Finkelstein, Nano Lett.16 4788–91 (2016).

    Article  CAS  Google Scholar 

  24. F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, and C.N. Lau, Science 317, 1530 (2007).

    Article  CAS  Google Scholar 

  25. A.F. Young and P. Kim, Nat. Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  26. M. Tinkham Introduction to Superconductivity Second Edition (Dover, 2004) pp. 215–218.

  27. G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 25 (1982).

  28. J.R. Williams, D.A. Abanin, L. DiCarlo, L.S. Levitov, and C.M. Marcus, Phys. Rev. B 80 045408 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Seredinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredinski, A., Draelos, A., Wei, MT. et al. Supercurrent in Graphene Josephson Junctions with Narrow Trenches in the Quantum Hall Regime. MRS Advances 3, 2855–2864 (2018). https://doi.org/10.1557/adv.2018.469

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.469

Navigation