Skip to main content

Advertisement

Log in

First-Principles Study of the Calcium Insertion in Layered and Non-Layered Phases of Vanadia

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We investigate the insertion energetics of Ca at low concentrations in four promising vanadium oxide phases (α and δ vanadium pentoxide (V2O5) polymorphs as well as rutile- (R) and bronze-type (B) vanadium dioxide (VO2)) using density functional theory (DFT). We find α-V2O5 to be the most suitable material for an application as cathode, driven by a stable coordinative environment, while VO2(R) does not exhibit a stable low-concentration CaxVO2 phase due to severe distortions of the host lattice due to the large calcium ion. The results provide insight into the possibility of employing these phases as active cathode materials of Ca-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Whittingham, C. Siu and J. Ding, Acc. Chem. Res. 51 (2), 258–264 (2018).

    CAS  Google Scholar 

  2. G. G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitz, N. Pereira, T. Chapman and R. Jaworski, J. Electrochem. Soc. 148 (8), A940–A950 (2001).

    CAS  Google Scholar 

  3. B. Pecquenard, D. Gourier and N. Baffier, Solid State Ionics 78 (3), 287–303 (1995).

    CAS  Google Scholar 

  4. G. Sai Gautam, P. Canepa, A. Abdellahi, A. Urban, R. Malik and G. Ceder, Chem. Mater. 27 (10), 3733–3742 (2015).

    CAS  Google Scholar 

  5. R. Shannon, Acta Crystallogr., Sect. A 32 (5), 751–767 (1976).

    Google Scholar 

  6. G. S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson and G. Ceder, Chem. Commun. 51 (71), 13619–13622 (2015).

    CAS  Google Scholar 

  7. D. Koch, V. V. Kulish and S. Manzhos, MRS Commun. 7 (4), 819–825 (2017).

    CAS  Google Scholar 

  8. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54 (16), 11169–11186 (1996).

    CAS  Google Scholar 

  9. P. E. Blöchl, Phys. Rev. B: Condens. Matter 50 (24), 17953–17979 (1994).

    Google Scholar 

  10. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59 (3), 1758–1775 (1999).

    CAS  Google Scholar 

  11. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke, Phys. Rev. Lett. 100 (13), 136406 (2008).

    Google Scholar 

  12. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Condens. Matter 13 (12), 5188–5192 (1976).

    Google Scholar 

  13. P. E. Blöchl, O. Jepsen and O. K. Andersen, Phys. Rev. B: Condens. Matter 49 (23), 16223–16233 (1994).

    Google Scholar 

  14. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B: Condens. Matter 57 (3), 1505–1509 (1998).

    CAS  Google Scholar 

  15. S. Grimme, J. Comput. Chem. 27 (15), 1787–1799 (2006).

    CAS  Google Scholar 

  16. T. Bučko, J. Hafner, S. Lebègue and J. G. Ángyán, J. Phys. Chem. A 114 (43), 11814–11824 (2010).

    Google Scholar 

  17. M. A. Sk and S. Manzhos, J. Power Sources 324, 572–581 (2016).

    CAS  Google Scholar 

  18. G. Henkelman, A. Arnaldsson and H. Jónsson, Comput. Mater. Sci. 36 (3), 354–360 (2006).

    Google Scholar 

  19. E. Sanville, D. Kenny Steven, R. Smith and G. Henkelman, J. Comput. Chem. 28 (5), 899–908 (2007).

    CAS  Google Scholar 

  20. W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter 21 (8), 084204 (2009).

    CAS  Google Scholar 

  21. M. Yu and D. R. Trinkle, J. Chem. Phys. 134 (6), 064111 (2011).

    Google Scholar 

  22. K. Momma and F. Izumi, J. Appl. Crystallogr. 44 (6), 1272–1276 (2011).

    CAS  Google Scholar 

  23. R. Enjalbert and J. Galy, Acta Crystallogr., Sect. C 42 (11), 1467–1469 (1986).

    Google Scholar 

  24. C. Leroux, G. Nihoul and G. Van Tendeloo, Phys. Rev. B: Condens. Matter 57 (9), 5111–5121 (1998).

    CAS  Google Scholar 

  25. V. Kulish and S. Manzhos, RSC Adv. 7 (30), 18643–18649 (2017).

    Google Scholar 

  26. H. Smolinski, C. Gros, W. Weber, U. Peuchert, G. Roth, M. Weiden and C. Geibel, Phys. Rev. Lett. 80 (23), 5164–5167 (1998).

    CAS  Google Scholar 

  27. M. Xing, F. Hou-Gang, H. Zu-Fei, H. Fang, W. Chun-Zhong and C. Gang, J. Phys.: Condens. Matter 20 (15), 155203 (2008).

    Google Scholar 

  28. A. N. Yaresko, V. N. Antonov, H. Eschrig, P. Thalmeier and P. Fulde, Phys. Rev. B: Condens. Matter 62 (23), 15538–15546 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Koch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, D., Manzhos, S. First-Principles Study of the Calcium Insertion in Layered and Non-Layered Phases of Vanadia. MRS Advances 3, 3507–3512 (2018). https://doi.org/10.1557/adv.2018.468

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.468

Navigation