Skip to main content
Log in

Atomistic Simulations of Carbon and Hydrogen Diffusion and Segregation in Alfa-Iron Deviant CSL Grain Boundaries

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Polycrystalline materials’ mechanical properties and failure modes depend on many factors that include diffusion and segregation of different alloying elements and solutes as well as the structure of its grain boundaries (GBs). Segregated solute atoms to GB can alter the properties of steel alloys. Some of these elements lead to enhancing the strength of steel, on the other hand others can degrade the toughness of steel significantly. It is well known that carbon increases the cohesion at grain boundary. While the presence of hydrogen in steel have a drastic effects including blistering, flaking and embrittlement of steel. In practice during forming processes, the coincidence site lattice (CSL) GBs are experiencing deviations from their ideal configurations. Consequently, this will change the atomic structural integrity by superposition of sub-boundary dislocation networks on the ideal CSL interfaces. For this study, the ideal ∑3 (112) structure and its angular deviations in BCC iron within the range of Brandon criterion are studied comprehensively using molecular statics simulations. The GB and free surface segregation energies of carbon and hydrogen atoms will be quantified. Rice-Wang model is used to assess the strengthening/embrittlement impact variation over the deviation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, D. Raabe, M. Herbig, P.P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, R. Kirchheim, Phys. Rev. Lett. 113 (2014) 1–5.

    Google Scholar 

  2. T.M. Hatem, M. a. Zikry, Philos. Mag. 89 (2009) 3087–3109.

    Article  CAS  Google Scholar 

  3. S. Mandal, K.G. Pradeep, S. Zaefferer, D. Raabe, Scr. Mater. 81 (2014) 16–19.

    Article  CAS  Google Scholar 

  4. M. Rajagopalan, M.A. Tschopp, K.N. Solanki, Jom 66 (2014) 129–138.

    Article  CAS  Google Scholar 

  5. J. Wang, R. Janisch, G.K.H. Madsen, R. Drautz, Acta Mater. 115 (2016) 259–268.

    Article  CAS  Google Scholar 

  6. A.H. Cottrell, Mater. Sci. Technol. 6 (1990) 121–123.

    Article  CAS  Google Scholar 

  7. N.R. Rhodes, M.A. Tschopp, K.N. Solanki, Model. Simul. Mater. Sci. Eng. 21 (2013) 35009.

    Article  Google Scholar 

  8. J.S. Braithwaite, P. Rez, Acta Mater. 53 (2005) 2715–2726.

    Article  CAS  Google Scholar 

  9. T.M. Hatem, M.A. Zikry, Comput. Mater. Contin. 17 (2010) 127–147.

    Google Scholar 

  10. M. Wagih, Y. Tang, T. Hatem, J.A. El-Awady, Mater. Res. Lett. 3 (2015) 184–189.

    Article  CAS  Google Scholar 

  11. T.M. Hatem, M.A. Zikry, J. Mech. Phys. Solids 58 (2010) 1057–1072.

    Article  CAS  Google Scholar 

  12. T.M. Hatem, M.A. Zikry, Mater. Sci. Technol. 27 (2011) 1570–1573.

    Article  CAS  Google Scholar 

  13. K.H. Khafagy, T.M. Hatem, S.M. Bedair, Appl. Phys. Lett. 112 (2018).

  14. M. Seita, J.P. Hanson, S. Gradečak, M.J. Demkowicz, Nat. Commun. 6 (2015).

  15. M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, S. Goto, Phys. Rev. Lett. 126103 (2014) 1–5.

    Google Scholar 

  16. M. Hamza, T.M. Hatem, D. Raabe, J.A. El-Awady, (2015) V009T12A069.

  17. M. Hendy, T.M. Hatem, J.A. El-Awady, in:, TMS Annu. Meet. Exhib., 2018, pp. 323–332.

  18. J. Levy, Phys. Status Solidi 31 (1969) 193–201.

    Article  CAS  Google Scholar 

  19. S. Plimpton, J. Comput. Phys. 117 (1995) 1–19.

    Article  CAS  Google Scholar 

  20. R.G.A. Veiga, C.S. Becquart, M. Perez, Comput. Mater. Sci. 82 (2014) 118–121.

    Article  CAS  Google Scholar 

  21. A. Ramasubramaniam, M. Itakura, E.A. Carter, Phys. Rev. B 79 (2009) 174101.

    Article  Google Scholar 

  22. M. Rajagopalan, M.A. Tschopp, K.N. Solanki, Jom 66 (2014) 129–138.

    Article  CAS  Google Scholar 

  23. K.N. Solanki, M.A. Tschopp, M.A. Bhatia, N.R. Rhodes, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 1365–1375.

    Article  CAS  Google Scholar 

  24. I.M. Navon, D.M. Legler, Mon. Weather Rev. 115 (1987) 1479–1502.

    Article  Google Scholar 

  25. Y. Fukai, J. Less Common Met. 101 (1984) 1–16.

    Article  CAS  Google Scholar 

  26. J.R. Rice, J.S. Wang, Mater. Sci. Eng. A 107 (1989) 23–40.

    Article  Google Scholar 

  27. N.R. Rhodes, M.A. Tschopp, K.N. Solanki, Model. Simul. Mater. Sci. Eng. 21 (2013) 35009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendy, M.A., Hatem, T.M. & El-Awady, J.A. Atomistic Simulations of Carbon and Hydrogen Diffusion and Segregation in Alfa-Iron Deviant CSL Grain Boundaries. MRS Advances 3, 2795–2800 (2018). https://doi.org/10.1557/adv.2018.452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.452

Navigation