Skip to main content
Log in

The Internal Buckling Behavior Induced by Growth Self-restriction in Vertical Multi-walled Carbon Nanotube Arrays

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The internal buckling is a common phenomenon in the as-grown carbon nanotube arrays. It makes the physical properties of carbon nanotube array in experiment lower than that in theory. In this work, we analyzed the formation and evolution mechanism of the internal buckling based on quasi-static compression model, which is different from collective effect of the van der Waals interactions. The self-restriction effect and the different growth rate of carbon nanotubes verify the possibility of the quasi-static compression model to explain the morphology evolution of vertical carbon nanotube arrays, especially the phenomenon of the quasi-straight and bent carbon nanotubes coexisted in the array. We generalized the Euler beam to wave-like beam and explained the mechanism of high-mode buckling combined with the van der Waals interaction. The calculated result about the link between compressive stress and strain confirms with the stage of collective buckling in the quasi-static compression test of carbon nanotube array. Preparation of well-organized carbon nanotube arrays was strong evidence verified the effect of self-restriction in experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354 (6348), 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Z.F. Ren; Z.P. Huang; J.W. Xu; J.H. Wang; P. Bush; M.P. Siegal; and P.N. Provencio, Science 282 (5391), 1105–1107 (1998).

    Article  CAS  Google Scholar 

  3. S. Fan; M.G. Chapline; N.R. Franklin; T.W. Tombler; A.M. Cassell; and H. Dai, Science 283 (5401), 512–514 (1999).

    Article  CAS  Google Scholar 

  4. J. Deng; R. Zheng; Y. Zhao; and G. Cheng, ACS Nano 6 (5), 3727–3733 (2012).

    Article  CAS  Google Scholar 

  5. J. Deng; R. Zheng; Y. Yang; Y. Zhao; and G. Cheng, Carbon 50 (12), 4732–4737 (2012).

    Article  CAS  Google Scholar 

  6. J. Deng; X. Hou; L. Cheng; F. Wang; B. Yu; G. Li; D. Li; G. Cheng; and S. Wu, ACS Appl. Mater. Inter. 6 (7), 5137–5143 (2014).

    Article  CAS  Google Scholar 

  7. J. Deng; G. Cheng; R. Zheng; B. Yu; G. Li; X. Hou; M. Zhao; and D. Li, Carbon 67 (0), 525–533 (2014).

    Article  CAS  Google Scholar 

  8. A. Cao; P.L. Dickrell; W.G. Sawyer; M.N. Ghasemi-Nejhad; and P.M. Ajayan, Science 310 (5752), 1307–1310 (2005).

    Article  CAS  Google Scholar 

  9. Z.P.R.Z. Jian-hua Deng, J. Korean Phys. Soc. 58 (41), 897–901 (2011).

    Article  Google Scholar 

  10. N. Selvakumar; S.B. Krupanidhi; and H.C. Barshilia, Adv. Mater. 26 (16), 2552–2557 (2014).

    Article  CAS  Google Scholar 

  11. A.J. Hart; and A.H. Slocum, Nano Lett. 6 (6), 1254–1260 (2006).

    Article  CAS  Google Scholar 

  12. Q. Zhang; W. Zhou; W. Qian; R. Xiang; J. Huang; D. Wang; and F. Wei, The Journal of Physical Chemistry C 111 (40), 14638–14643 (2007).

    Article  CAS  Google Scholar 

  13. J. Lee; E. Oh; H. Kim; S. Cho; T. Kim; S. Lee; J. Park; H. Kim; and K. Lee, J. Mater. Sci. 48 (20), 6897–6904 (2013).

    Article  CAS  Google Scholar 

  14. M.R. Maschmann, Carbon 86 (0), 26–37 (2015).

    Article  CAS  Google Scholar 

  15. T. Tong; Y. Zhao; L. Delzeit; A. Kashani; M. Meyyappan; and A. Majumdar, Nano Lett. 8 (2), 511–515 (2008).

    Article  CAS  Google Scholar 

  16. Y. Li; H. Kim; B. Wei; J. Kang; J. Choi; J. Nam; and J. Suhr, Nanoscale 7 (34), 14299– 14304 (2015).

    Article  CAS  Google Scholar 

  17. U. Vainio; T.I.W. Schnoor; S. Koyiloth Vayalil; K. Schulte; M. Müller; and E.T. Lilleodden, The Journal of Physical Chemistry C 118 (18), 9507–9513 (2014).

    Article  CAS  Google Scholar 

  18. B.N. Wang; R.D. Bennett; E. Verploegen; A.J. Hart; and R.E. Cohen, The Journal of Physical Chemistry C 111 (16), 5859–5865 (2007).

    Article  CAS  Google Scholar 

  19. E.R. Meshot; E. Verploegen; M. Bedewy; S. Tawfick; A.R. Woll; K.S. Green; M. Hromalik; L.J. Koerner; H.T. Philipp; M.W. Tate; S.M. Gruner; and A.J. Hart, ACS Nano 6 (6), 5091–5101 (2012).

    Article  CAS  Google Scholar 

  20. Y. Yun; V. Shanov; Y. Tu; S. Subramaniam; and M.J. Schulz, The Journal of Physical Chemistry B 110 (47), 23920–23925 (2006).

    Article  CAS  Google Scholar 

  21. I.Y. Stein; D.J. Lewis; and B.L. Wardle, Nanoscale 7 (46), 19426–19431 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Cheng, Ga. & Zheng, Rt. The Internal Buckling Behavior Induced by Growth Self-restriction in Vertical Multi-walled Carbon Nanotube Arrays. MRS Advances 3, 2815–2823 (2018). https://doi.org/10.1557/adv.2018.429

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.429

Navigation