Abstract
The internal buckling is a common phenomenon in the as-grown carbon nanotube arrays. It makes the physical properties of carbon nanotube array in experiment lower than that in theory. In this work, we analyzed the formation and evolution mechanism of the internal buckling based on quasi-static compression model, which is different from collective effect of the van der Waals interactions. The self-restriction effect and the different growth rate of carbon nanotubes verify the possibility of the quasi-static compression model to explain the morphology evolution of vertical carbon nanotube arrays, especially the phenomenon of the quasi-straight and bent carbon nanotubes coexisted in the array. We generalized the Euler beam to wave-like beam and explained the mechanism of high-mode buckling combined with the van der Waals interaction. The calculated result about the link between compressive stress and strain confirms with the stage of collective buckling in the quasi-static compression test of carbon nanotube array. Preparation of well-organized carbon nanotube arrays was strong evidence verified the effect of self-restriction in experiment.
Similar content being viewed by others
References
S. Iijima, Nature 354 (6348), 56–58 (1991).
Z.F. Ren; Z.P. Huang; J.W. Xu; J.H. Wang; P. Bush; M.P. Siegal; and P.N. Provencio, Science 282 (5391), 1105–1107 (1998).
S. Fan; M.G. Chapline; N.R. Franklin; T.W. Tombler; A.M. Cassell; and H. Dai, Science 283 (5401), 512–514 (1999).
J. Deng; R. Zheng; Y. Zhao; and G. Cheng, ACS Nano 6 (5), 3727–3733 (2012).
J. Deng; R. Zheng; Y. Yang; Y. Zhao; and G. Cheng, Carbon 50 (12), 4732–4737 (2012).
J. Deng; X. Hou; L. Cheng; F. Wang; B. Yu; G. Li; D. Li; G. Cheng; and S. Wu, ACS Appl. Mater. Inter. 6 (7), 5137–5143 (2014).
J. Deng; G. Cheng; R. Zheng; B. Yu; G. Li; X. Hou; M. Zhao; and D. Li, Carbon 67 (0), 525–533 (2014).
A. Cao; P.L. Dickrell; W.G. Sawyer; M.N. Ghasemi-Nejhad; and P.M. Ajayan, Science 310 (5752), 1307–1310 (2005).
Z.P.R.Z. Jian-hua Deng, J. Korean Phys. Soc. 58 (41), 897–901 (2011).
N. Selvakumar; S.B. Krupanidhi; and H.C. Barshilia, Adv. Mater. 26 (16), 2552–2557 (2014).
A.J. Hart; and A.H. Slocum, Nano Lett. 6 (6), 1254–1260 (2006).
Q. Zhang; W. Zhou; W. Qian; R. Xiang; J. Huang; D. Wang; and F. Wei, The Journal of Physical Chemistry C 111 (40), 14638–14643 (2007).
J. Lee; E. Oh; H. Kim; S. Cho; T. Kim; S. Lee; J. Park; H. Kim; and K. Lee, J. Mater. Sci. 48 (20), 6897–6904 (2013).
M.R. Maschmann, Carbon 86 (0), 26–37 (2015).
T. Tong; Y. Zhao; L. Delzeit; A. Kashani; M. Meyyappan; and A. Majumdar, Nano Lett. 8 (2), 511–515 (2008).
Y. Li; H. Kim; B. Wei; J. Kang; J. Choi; J. Nam; and J. Suhr, Nanoscale 7 (34), 14299– 14304 (2015).
U. Vainio; T.I.W. Schnoor; S. Koyiloth Vayalil; K. Schulte; M. Müller; and E.T. Lilleodden, The Journal of Physical Chemistry C 118 (18), 9507–9513 (2014).
B.N. Wang; R.D. Bennett; E. Verploegen; A.J. Hart; and R.E. Cohen, The Journal of Physical Chemistry C 111 (16), 5859–5865 (2007).
E.R. Meshot; E. Verploegen; M. Bedewy; S. Tawfick; A.R. Woll; K.S. Green; M. Hromalik; L.J. Koerner; H.T. Philipp; M.W. Tate; S.M. Gruner; and A.J. Hart, ACS Nano 6 (6), 5091–5101 (2012).
Y. Yun; V. Shanov; Y. Tu; S. Subramaniam; and M.J. Schulz, The Journal of Physical Chemistry B 110 (47), 23920–23925 (2006).
I.Y. Stein; D.J. Lewis; and B.L. Wardle, Nanoscale 7 (46), 19426–19431 (2015).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Zhang, Q., Cheng, Ga. & Zheng, Rt. The Internal Buckling Behavior Induced by Growth Self-restriction in Vertical Multi-walled Carbon Nanotube Arrays. MRS Advances 3, 2815–2823 (2018). https://doi.org/10.1557/adv.2018.429
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.429