Abstract
HgTe nanocrystals are extremely interesting materials to obtain a highly tunable absorption spectrum in the infrared range. Here, we discuss the two extreme cases of strongly confined and barely confined HgTe nanocrystals. We discuss the synthesis and optoelectronic properties of HgTe 2D nanoplatelets where the confinement energy can be as large as 1.5 eV. This material presents enhanced (mostly narrower) light emitting properties compared to spherical nanocrystals emitting at the same wavelength. Moreover, absorption spectra, majority carriers and time response can be tuned by carefully choosing the surface chemistry and applying a well-chosen gate bias. HgTe can also be used to explore the effect of vanishing confinement and to obtain quasi bulk properties with tunable absorption in the THz, up to 150 µm.
Similar content being viewed by others
References
C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706–8715 (1993).
X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59–61 (2000).
M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, and B. Dubertret, Chem. Rev. 116, 10934–10982 (2016).
E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, and B. Dubertret, Acc. Chem. Res. 48, 22–30 (2015).
V. Adinolfi and E. H. Sargent, Nature 542, 324–327 (2017).
M. V. Kovalenko, E. Kaufmann, D. Pachinger, J. Roither, M. Huber, J. Stangl, G. Hesser, F. Schäffler, and W. Heiss, J. Am. Chem. Soc. 128, 3516–3517 (2006).
S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, Nat. Photonics 5, 489– 493 (2011).
E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, Nano Lett. 16, 1282–1286 (2016).
Konstantatos and Sargent, Collidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge University Press, 2013).
C. Wang, M. Shim, and P. Guyot-Sionnest, Science 291, 2390–2392 (2001).
D. J. Norris, A. L. Efros, and S. C. Erwin, Science 319, 1776–1779 (2008).
K. S. Jeong, Z. Deng, S. Keuleyan, H. Liu, and P. Guyot-Sionnest, J. Phys. Chem. Lett. 5, 1139–1143 (2014).
B. Yoon, J. Jeong, and K. S. Jeong, J. Phys. Chem. C 120, 22062–22068 (2016).
G. Shen and P. Guyot-Sionnest, J. Phys. Chem. C 120, 11744–11753 (2016).
X. Tang, G. fu Wu, and K. W. C. Lai, J. Mater. Chem. C 5, 362–369 (2016).
Z. Deng, K. S. Jeong, and P. Guyot-Sionnest, ACS Nano 8, 11707–11714 (2014).
A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, J. Am. Chem. Soc. 133, 6509–6512 (2011).
A. Sahu, A. Khare, D. D. Deng, and D. J. Norris, Chem. Commun. 48, 5458–5460 (2012).
T. Chen, K. V. Reich, N. J. Kramer, H. Fu, U. R. Kortshagen, and B. I. Shklovskii, Nat. Mater. 15, 299–303 (2016).
H. Zhang, R. Zhang, K. S. Schramke, N. M. Bedford, K. Hunter, U. R. Kortshagen, and P. Nordlander, ACS Photonics 4, 963–970 (2017).
R. Gresback, N. J. Kramer, Y. Ding, T. Chen, U. R. Kortshagen, and T. Nozaki, ACS Nano 8, 5650–5656 (2014).
R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, Nano Lett. 11, 4706– 4710 (2011).
C. Delerue, Nano Lett. 17, 7599–7605 (2017).
E. Della Gaspera, M. Bersani, M. Cittadini, M. Guglielmi, D. Pagani, R. Noriega, S. Mehra, A. Salleo, and A. Martucci, J. Am. Chem. Soc. 135, 3439–3448 (2013).
B. Tandon, A. Yadav, D. Khurana, P. Reddy, P. K. Santra, and A. Nag, Chem. Mater. 29, 9360–9368 (2017).
E. Lhuillier and P. Guyot-Sionnest, IEEE J. Sel. Top. Quantum Electron. 23, 6000208 (2017).
S. Hyuk Im, H. Kim, S. Woo Kim, S.-W. Kim, and S. Il Seok, Nanoscale 4, 1581–1584 (2012).
M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, ACS Nano 8, 8208–8216 (2014).
H. Seong, K. Cho, and S. Kim, Semicond. Sci. Technol. 23, 075011 (2008).
M. Chen, H. Yu, S. V. Kershaw, H. Xu, S. Gupta, F. Hetsch, A. L. Rogach, and N. Zhao, Adv. Funct. Mater. 24, 53–59 (2013).
E. Lhuillier, S. Keuleyan, P. Rekemeyer, and P. Guyot-Sionnest, J. Appl. Phys. 110, 033110 (2011).
P. Guyot-Sionnest and J. A. Roberts, Appl. Phys. Lett. 107, 253104 (2015).
S. E. Keuleyan, P. Guyot-Sionnest, C. Delerue, and G. Allan, ACS Nano 8, 8676–8682 (2014).
G. Shen, M. Chen, and P. Guyot-Sionnest, J. Phys. Chem. Lett. 8, 2224–2228 (2017).
E. Lhuillier, S. Keuleyan, H. Liu, and P. Guyot-Sionnest, Chem. Mater. 25, 1272–1282 (2013).
Y. Yifat, M. Ackerman, and P. Guyot-Sionnest, Appl. Phys. Lett. 110, 041106 (2017).
B. Martinez, C. Livache, N. Goubet, A. Jagtap, H. Cruguel, A. Ouerghi, E. Lacaze, M. G. Silly, and E. Lhuillier, J. Phys. Chem. C 122, 859–865 (2018).
E. Lhuillier, S. Keuleyan, P. Zolotavin, and P. Guyot-Sionnest, Adv. Mater. 25, 137–141 (2013).
E. Izquierdo, A. Robin, S. Keuleyan, N. Lequeux, E. Lhuillier, and S. Ithurria, J. Am. Chem. Soc. 138, 10496–10501 (2016).
C. Livache, E. Izquierdo, B. Martinez, M. Dufour, D. Pierucci, S. Keuleyan, H. Cruguel, L. Becerra, J. L. Fave, H. Aubin, A. Ouerghi, E. Lacaze, M. G. Silly, B. Dubertret, S. Ithurria, and E. Lhuillier, Nano Lett. 17, 4067–4074 (2017).
N. Goubet, A. Jagtap, C. Livache, B. Martinez, H. Portalès, X. Z. Xu, R. P. S. M. Lobo, B. Dubertret, and E. Lhuillier, J. Am. Chem. Soc. 140, 5033–5036 (2018).
G. Allan and C. Delerue, Phys. Rev. B 86, 165437 (2012).
G. Nimtz, B. Schlicht, and R. Dornhaus, Narrow-Gap Semiconductors (Springer, 1983).
P. Man and D. S. Pan, Phys. Rev. B 44, 8745–8758 (1991).
V. Rinnerbauer, K. Hingerl, M. Kovalenko, and W. Heiss, Appl. Phys. Lett. 89, 193114 (2006).
E. Lhuillier, S. Keuleyan, and P. Guyot-Sionnest, Nanotechnology 23, 175705 (2012).
M. P. Hendricks, M. P. Campos, G. T. Cleveland, I. J.-L. Plante, and J. S. Owen, Science 348, 1226–1230 (2015).
S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet, B. Abécassis, X. Xu, and B. Dubertret, Chem. Mater. 25, 2455–2462 (2013).
L. De Trizio and L. Manna, Chem. Rev. 116, 10852–10887 (2016).
B. J. Beberwyck, Y. Surendranath, and A. P. Alivisatos, J. Phys. Chem. C 117, 19759– 19770 (2013).
A. L. Rogach, S. V. Kershaw, M. Burt, M. T. Harrison, A. Kornowski, A. Eychmüller, and H. Weller, Adv. Mater. 11, 552–555 (1999).
P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, Nat. Mater. 17, 35–42 (2018).
A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, Small 3, 536–557 (2007).
E. Lhuillier, S. Ithurria, A. Descamps-Mandine, T. Douillard, R. Castaing, X. Z. Xu, P.-L. Taberna, P. Simon, H. Aubin, and B. Dubertret, J. Phys. Chem. C 119, 21795–21799 (2015).
E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, and B. Dubertret, Nano Lett. 14, 2715–2719 (2014).
B. Martinez, C. Livache, L. D. Notemgnou Mouafo, N. Goubet, S. Keuleyan, H. Cruguel, S. Ithurria, H. Aubin, A. Ouerghi, B. Doudin, E. Lacaze, B. Dubertret, M. G. Silly, R. P. S. M. Lobo, J.-F. Dayen, and E. Lhuillier, ACS Appl. Mater. Interfaces 9, 36173–36180 (2017).
S. Keuleyan, E. Lhuillier, and P. Guyot-Sionnest, J. Am. Chem. Soc. 133, 16422–16424 (2011).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Livache, C., Goubet, N., Martinez, B. et al. HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material. MRS Advances 3, 2913–2921 (2018). https://doi.org/10.1557/adv.2018.409
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.409