Skip to main content
Log in

HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

HgTe nanocrystals are extremely interesting materials to obtain a highly tunable absorption spectrum in the infrared range. Here, we discuss the two extreme cases of strongly confined and barely confined HgTe nanocrystals. We discuss the synthesis and optoelectronic properties of HgTe 2D nanoplatelets where the confinement energy can be as large as 1.5 eV. This material presents enhanced (mostly narrower) light emitting properties compared to spherical nanocrystals emitting at the same wavelength. Moreover, absorption spectra, majority carriers and time response can be tuned by carefully choosing the surface chemistry and applying a well-chosen gate bias. HgTe can also be used to explore the effect of vanishing confinement and to obtain quasi bulk properties with tunable absorption in the THz, up to 150 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  2. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  3. M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, and B. Dubertret, Chem. Rev. 116, 10934–10982 (2016).

    Article  CAS  Google Scholar 

  4. E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, and B. Dubertret, Acc. Chem. Res. 48, 22–30 (2015).

    Article  CAS  Google Scholar 

  5. V. Adinolfi and E. H. Sargent, Nature 542, 324–327 (2017).

    Article  CAS  Google Scholar 

  6. M. V. Kovalenko, E. Kaufmann, D. Pachinger, J. Roither, M. Huber, J. Stangl, G. Hesser, F. Schäffler, and W. Heiss, J. Am. Chem. Soc. 128, 3516–3517 (2006).

    Article  CAS  Google Scholar 

  7. S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, Nat. Photonics 5, 489– 493 (2011).

    Article  CAS  Google Scholar 

  8. E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, Nano Lett. 16, 1282–1286 (2016).

    Article  CAS  Google Scholar 

  9. Konstantatos and Sargent, Collidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge University Press, 2013).

  10. C. Wang, M. Shim, and P. Guyot-Sionnest, Science 291, 2390–2392 (2001).

    Article  CAS  Google Scholar 

  11. D. J. Norris, A. L. Efros, and S. C. Erwin, Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  12. K. S. Jeong, Z. Deng, S. Keuleyan, H. Liu, and P. Guyot-Sionnest, J. Phys. Chem. Lett. 5, 1139–1143 (2014).

    Article  CAS  Google Scholar 

  13. B. Yoon, J. Jeong, and K. S. Jeong, J. Phys. Chem. C 120, 22062–22068 (2016).

    Article  CAS  Google Scholar 

  14. G. Shen and P. Guyot-Sionnest, J. Phys. Chem. C 120, 11744–11753 (2016).

    Article  CAS  Google Scholar 

  15. X. Tang, G. fu Wu, and K. W. C. Lai, J. Mater. Chem. C 5, 362–369 (2016).

    Article  CAS  Google Scholar 

  16. Z. Deng, K. S. Jeong, and P. Guyot-Sionnest, ACS Nano 8, 11707–11714 (2014).

    Article  CAS  Google Scholar 

  17. A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, J. Am. Chem. Soc. 133, 6509–6512 (2011).

    Article  CAS  Google Scholar 

  18. A. Sahu, A. Khare, D. D. Deng, and D. J. Norris, Chem. Commun. 48, 5458–5460 (2012).

    Article  CAS  Google Scholar 

  19. T. Chen, K. V. Reich, N. J. Kramer, H. Fu, U. R. Kortshagen, and B. I. Shklovskii, Nat. Mater. 15, 299–303 (2016).

    Article  CAS  Google Scholar 

  20. H. Zhang, R. Zhang, K. S. Schramke, N. M. Bedford, K. Hunter, U. R. Kortshagen, and P. Nordlander, ACS Photonics 4, 963–970 (2017).

    Article  CAS  Google Scholar 

  21. R. Gresback, N. J. Kramer, Y. Ding, T. Chen, U. R. Kortshagen, and T. Nozaki, ACS Nano 8, 5650–5656 (2014).

    Article  CAS  Google Scholar 

  22. R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, Nano Lett. 11, 4706– 4710 (2011).

    Article  CAS  Google Scholar 

  23. C. Delerue, Nano Lett. 17, 7599–7605 (2017).

    Article  CAS  Google Scholar 

  24. E. Della Gaspera, M. Bersani, M. Cittadini, M. Guglielmi, D. Pagani, R. Noriega, S. Mehra, A. Salleo, and A. Martucci, J. Am. Chem. Soc. 135, 3439–3448 (2013).

    Article  CAS  Google Scholar 

  25. B. Tandon, A. Yadav, D. Khurana, P. Reddy, P. K. Santra, and A. Nag, Chem. Mater. 29, 9360–9368 (2017).

    Article  CAS  Google Scholar 

  26. E. Lhuillier and P. Guyot-Sionnest, IEEE J. Sel. Top. Quantum Electron. 23, 6000208 (2017).

    Article  Google Scholar 

  27. S. Hyuk Im, H. Kim, S. Woo Kim, S.-W. Kim, and S. Il Seok, Nanoscale 4, 1581–1584 (2012).

    Article  CAS  Google Scholar 

  28. M. Chen, L. Shao, S. V. Kershaw, H. Yu, J. Wang, A. L. Rogach, and N. Zhao, ACS Nano 8, 8208–8216 (2014).

    Article  CAS  Google Scholar 

  29. H. Seong, K. Cho, and S. Kim, Semicond. Sci. Technol. 23, 075011 (2008).

    Article  CAS  Google Scholar 

  30. M. Chen, H. Yu, S. V. Kershaw, H. Xu, S. Gupta, F. Hetsch, A. L. Rogach, and N. Zhao, Adv. Funct. Mater. 24, 53–59 (2013).

    Article  CAS  Google Scholar 

  31. E. Lhuillier, S. Keuleyan, P. Rekemeyer, and P. Guyot-Sionnest, J. Appl. Phys. 110, 033110 (2011).

    Article  CAS  Google Scholar 

  32. P. Guyot-Sionnest and J. A. Roberts, Appl. Phys. Lett. 107, 253104 (2015).

    Article  CAS  Google Scholar 

  33. S. E. Keuleyan, P. Guyot-Sionnest, C. Delerue, and G. Allan, ACS Nano 8, 8676–8682 (2014).

    Article  CAS  Google Scholar 

  34. G. Shen, M. Chen, and P. Guyot-Sionnest, J. Phys. Chem. Lett. 8, 2224–2228 (2017).

    Article  CAS  Google Scholar 

  35. E. Lhuillier, S. Keuleyan, H. Liu, and P. Guyot-Sionnest, Chem. Mater. 25, 1272–1282 (2013).

    Article  CAS  Google Scholar 

  36. Y. Yifat, M. Ackerman, and P. Guyot-Sionnest, Appl. Phys. Lett. 110, 041106 (2017).

    Article  CAS  Google Scholar 

  37. B. Martinez, C. Livache, N. Goubet, A. Jagtap, H. Cruguel, A. Ouerghi, E. Lacaze, M. G. Silly, and E. Lhuillier, J. Phys. Chem. C 122, 859–865 (2018).

    Article  CAS  Google Scholar 

  38. E. Lhuillier, S. Keuleyan, P. Zolotavin, and P. Guyot-Sionnest, Adv. Mater. 25, 137–141 (2013).

    Article  CAS  Google Scholar 

  39. E. Izquierdo, A. Robin, S. Keuleyan, N. Lequeux, E. Lhuillier, and S. Ithurria, J. Am. Chem. Soc. 138, 10496–10501 (2016).

    Article  CAS  Google Scholar 

  40. C. Livache, E. Izquierdo, B. Martinez, M. Dufour, D. Pierucci, S. Keuleyan, H. Cruguel, L. Becerra, J. L. Fave, H. Aubin, A. Ouerghi, E. Lacaze, M. G. Silly, B. Dubertret, S. Ithurria, and E. Lhuillier, Nano Lett. 17, 4067–4074 (2017).

    Article  CAS  Google Scholar 

  41. N. Goubet, A. Jagtap, C. Livache, B. Martinez, H. Portalès, X. Z. Xu, R. P. S. M. Lobo, B. Dubertret, and E. Lhuillier, J. Am. Chem. Soc. 140, 5033–5036 (2018).

    Article  CAS  Google Scholar 

  42. G. Allan and C. Delerue, Phys. Rev. B 86, 165437 (2012).

    Article  CAS  Google Scholar 

  43. G. Nimtz, B. Schlicht, and R. Dornhaus, Narrow-Gap Semiconductors (Springer, 1983).

  44. P. Man and D. S. Pan, Phys. Rev. B 44, 8745–8758 (1991).

    Article  CAS  Google Scholar 

  45. V. Rinnerbauer, K. Hingerl, M. Kovalenko, and W. Heiss, Appl. Phys. Lett. 89, 193114 (2006).

    Article  CAS  Google Scholar 

  46. E. Lhuillier, S. Keuleyan, and P. Guyot-Sionnest, Nanotechnology 23, 175705 (2012).

    Article  Google Scholar 

  47. M. P. Hendricks, M. P. Campos, G. T. Cleveland, I. J.-L. Plante, and J. S. Owen, Science 348, 1226–1230 (2015).

    Article  CAS  Google Scholar 

  48. S. Pedetti, B. Nadal, E. Lhuillier, B. Mahler, C. Bouet, B. Abécassis, X. Xu, and B. Dubertret, Chem. Mater. 25, 2455–2462 (2013).

    Article  CAS  Google Scholar 

  49. L. De Trizio and L. Manna, Chem. Rev. 116, 10852–10887 (2016).

    Article  CAS  Google Scholar 

  50. B. J. Beberwyck, Y. Surendranath, and A. P. Alivisatos, J. Phys. Chem. C 117, 19759– 19770 (2013).

    Article  CAS  Google Scholar 

  51. A. L. Rogach, S. V. Kershaw, M. Burt, M. T. Harrison, A. Kornowski, A. Eychmüller, and H. Weller, Adv. Mater. 11, 552–555 (1999).

    Article  CAS  Google Scholar 

  52. P. Geiregat, A. J. Houtepen, L. K. Sagar, I. Infante, F. Zapata, V. Grigel, G. Allan, C. Delerue, D. Van Thourhout, and Z. Hens, Nat. Mater. 17, 35–42 (2018).

    Article  CAS  Google Scholar 

  53. A. L. Rogach, A. Eychmüller, S. G. Hickey, and S. V. Kershaw, Small 3, 536–557 (2007).

    Article  CAS  Google Scholar 

  54. E. Lhuillier, S. Ithurria, A. Descamps-Mandine, T. Douillard, R. Castaing, X. Z. Xu, P.-L. Taberna, P. Simon, H. Aubin, and B. Dubertret, J. Phys. Chem. C 119, 21795–21799 (2015).

    Article  CAS  Google Scholar 

  55. E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, and B. Dubertret, Nano Lett. 14, 2715–2719 (2014).

    Article  CAS  Google Scholar 

  56. B. Martinez, C. Livache, L. D. Notemgnou Mouafo, N. Goubet, S. Keuleyan, H. Cruguel, S. Ithurria, H. Aubin, A. Ouerghi, B. Doudin, E. Lacaze, B. Dubertret, M. G. Silly, R. P. S. M. Lobo, J.-F. Dayen, and E. Lhuillier, ACS Appl. Mater. Interfaces 9, 36173–36180 (2017).

    Article  CAS  Google Scholar 

  57. S. Keuleyan, E. Lhuillier, and P. Guyot-Sionnest, J. Am. Chem. Soc. 133, 16422–16424 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livache, C., Goubet, N., Martinez, B. et al. HgTe, the Most Tunable Colloidal Material: from the Strong Confinement Regime to THz Material. MRS Advances 3, 2913–2921 (2018). https://doi.org/10.1557/adv.2018.409

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.409

Navigation