Skip to main content
Log in

Graphene Quantum Dots Electrochemistry and Development of Ultrasensitive Enzymatic Glucose Sensor

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) - zero-dimensional materials - are sheets of a few nanometers in lateral dimension and exhibit quantum confinement and edge site effects where sp2-bonded carbon nanocore surrounded with edged plane functional moieties is promising as advanced electroactive sensing platforms. In this work, GQDs are synthesized by solvothermal and hydrothermal techniques, with optimal size of 5 nm. Their potential in fundamental (direct electron transfer) and applied (enzymatic glucose biosensor) electrochemistry are demonstrated. Glucose oxidase (GOx) immobilized on glassy carbon (GC) electrodes modified with GQDs are investigated by means of cyclic voltammetry, differential pulse voltammetry, and amperometry. Well-defined quasi-reversible redox peaks observed under various electrochemical parameters helped to determine diffusion coefficient (D) and first-order electron transfer rate (kET). The cyclic voltammetry curves showed homogeneous ion transport for GQD with D ranging between 8.45 × 10−9 m2 s−1 and 3 × 10−8 m2 s−1 following GO < rGO < GQD < GQD (with FcMeOH as redox probe) < GOx/rGO < GOx/GO < HRP/GQDs < GOx/GQDs. The developed GOx-GQDs biosensor responds efficiently and linearly to the presence of glucose over concentrations ranging 10 μM and 3 mM with limit of detection 1.35 μM and sensitivity 0.00769 μA μM−1·cm−2 as compared with rGO (0.025 μA μM−1 cm−2, 4.16 μM) and GO (0.064 μA μM−1 cm−2, 4.82 μM) nanosheets. The high performance and stability of GQDs is attributed to sufficiently large surface-to-volume ratio, excellent biocompatibility, abundant hydrophilic edge site density, and partially hydrophobic planar sites that favors GOx adsorption on the electrode surface and versatile architectures to ensure rapid charge transfer and electron/ion conduction (<10 ms). We also carried out similar studies with other enzymatic protein biomolecules on electrode surfaces prepared from GQD precursors for electrochemical comparison, thus opening up potential sensing applications in medicine as well as bio-nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H. Koppens, V. Palermo, N. Pugno et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  CAS  Google Scholar 

  3. E. Conway in Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum: New York, USA, (1999).

    Book  Google Scholar 

  4. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  Google Scholar 

  5. D. Chen, L. Tang, and J. Li: Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39, 3157–3180 (2010).

    Article  CAS  Google Scholar 

  6. J. Ping, J. Wu, Y. Wang, and Y. Ying: Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 34, 70–76 (2010).

    Article  CAS  Google Scholar 

  7. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  8. X. L. Li, X. R. Wang, L. Zhang, S.W. Lee, and H. J. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  9. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chowalla, and V.B. Shenoy: Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010).

    Article  CAS  Google Scholar 

  10. K. P. Loh, Q. Bao, G. Eda, and M. Chowalla: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010).

    Article  CAS  Google Scholar 

  11. G. Eda and M. Chowalla: Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 22, 2392–2415 (2010).

    Article  CAS  Google Scholar 

  12. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  Google Scholar 

  13. Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto: Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Lett. 9, 3318–3322 (2009).

    Article  CAS  Google Scholar 

  14. V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, and H. Stamatis: Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotech. 32, 312–320 (2014).

    Article  CAS  Google Scholar 

  15. D. A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  16. S. N. Baker and G.A. Baker: Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 49, 6726–6744 (2010).

    Article  CAS  Google Scholar 

  17. F. Liu, M.-H. Jang, H.D. Ha, J.-H. Kim, Y.-H.; Cho, T.S. Seo: Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater. 25, 3657–3662 (2013).

    Article  CAS  Google Scholar 

  18. C. S. Lim, K. Hola, A. Ambrosi, R. Zboril, and M. Pumera: Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 52, 75–79 (2015).

    Article  CAS  Google Scholar 

  19. H. J. Martin, L. Vazquez, M.T. Martinez, and A. Excarpa: Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Adv. 4, 132–139 (2014).

    Article  CAS  Google Scholar 

  20. R. Sekiya, Y. Uemura, H. Murakami, and T. Haino: White-light-emitting edge-functionalized graphene quantum dots. Angew. Chem. Int. Ed. 53, 5619–5623 (2014).

    Article  CAS  Google Scholar 

  21. S.K.A. Mahasin, A. Ananthanarayanan, L. Huang, K.H. Lim, and P. Chen: Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2, 6954–6960 (2014).

    Article  CAS  Google Scholar 

  22. Y. Feng, J. Zhao, X. Yan, F. Tang, and Q. Xue: Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon 66, 334–339 (2016).

    Article  CAS  Google Scholar 

  23. N. Suzuki, Y. Wang, P. Elvati, Z.-B. Qu, K. Kim, S. Jiang, E. Baumeister, J. Lee, B. Yeom, J.H. Bahng et al. Chiral Graphene Quantum Dots. ACS Nano 10, 1744–1755 (2016).

    Article  CAS  Google Scholar 

  24. K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, and A.L. Rogach: Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9, 590–603 (2014).

    Article  CAS  Google Scholar 

  25. J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, and K.P. Loh: One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 3, 2367–2375 (2009).

    Article  CAS  Google Scholar 

  26. J. Shen, Y. Zhu, X. Yang, and C. Li: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012).

    Article  CAS  Google Scholar 

  27. M.L. Mueller, X. Yan, J.A. McGuire, L.S. Li: Triplet States and electronic relaxation in photoexcited graphene quantum dots. Nano Lett. 10, 2679–2682 (2010).

    Article  CAS  Google Scholar 

  28. S. Zhu, J. Zhang, C. Qiao, C. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011).

    Article  CAS  Google Scholar 

  29. M. A. Reed, Quantum Dots. Sci. Am. 1, 118–123 (1993).

    Article  Google Scholar 

  30. H. Sun, L. Wu, W. Wei, and X: Recent advances in graphene quantum dots for sensing. Mater. Today 16, 433–442 (2013).

    Article  CAS  Google Scholar 

  31. M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22, 7461–7467 (2012).

    Article  CAS  Google Scholar 

  32. S. Gupta, C. Price, and E. Heintzman: Conducting Polymer Nanostructures and Nanocomposites with Carbon Nanotubes: Hierarchical Assembly by Molecular Electrochemistry, Growth Aspects and Property Characterization. J. Nanosci. Nanotechnol. 16, 374–391 (2016).

    Article  CAS  Google Scholar 

  33. S. Gupta, E. Heintzman, and C. Price: Electrostatic Layer-By-Layer Self-Assembled Graphene/Multi-Walled Carbon Nanotubes Hybrid Multilayers as Efficient ‘All Carbon’ Supercapacitors. J. Nanosci. Nanotechnol. 16, 4771–4782 (2016).

    Article  CAS  Google Scholar 

  34. S. Gupta, S.B. Carrizosa, B. McDonald, J. Jasinski, and N. Dimakis: Graphene-family nanomaterials assembled with cobalt oxides and cobalt nanoparticles as hybrid supercapacitive electrodes and enzymeless glucose detection platforms. J. Mater. Res. 32, 301–322 (2017).

    Article  CAS  Google Scholar 

  35. S. Gupta, B. Aberg, S.B. Carrizosa, and N. Dimakis: Vanadium pentoxide nanobelt-reduced graphene oxide nanosheet as high-performance pseudocapacitive electrodes: AC impedance spectroscopy data modeling and theoretical calculations. Materials 9, 615 (2016), doi:10.3390/ma9080615.

    Article  CAS  Google Scholar 

  36. S. Gupta, M. VanMeveren, and J. Jasinski: Investigating Electrochemical Properties and Interfacial Processes of Manganese Oxides/Graphene Hybrids as High-Performance Supercapacitor Electrodes. Int. J. Electrochem. Sci. 10, 10272–10291 (2015).

    CAS  Google Scholar 

  37. S. Gupta and R. Wood: Development of FRET biosensor based on aptamer/functionalized graphene for ultrasensitive detection of bisphenol A and discrimination from analogs. Nano-Struct. Nano-Objects 10, 131–140 (2017).

    Article  CAS  Google Scholar 

  38. S. Gupta and A. Irihamye: Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry. AIP Adv. 5, 037106 (2015).

    Article  CAS  Google Scholar 

  39. P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, and C. Cai: Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 10, 8606–8614 (2010).

    Article  CAS  Google Scholar 

  40. G. Zeng, Y. Xing, J. Gao, Z. Wang, and X. Zhang: Unconventional Layer-by-Layer Assembly of Graphene Multilayer Films for Enzyme-Based Glucose and Maltose Biosensing. Langmuir 26, 15022–15026 (2010).

    Article  CAS  Google Scholar 

  41. S. Park, J. An, and R.J. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff: Hydrazine-reduction of graphite- and graphene oxide. Carbon 49, 3019–3023 (2011).

    Article  CAS  Google Scholar 

  42. Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng, G. Gao, P. Gong, P. Zhang, Y. Ma et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34, 5236–5243 (2013).

    Article  CAS  Google Scholar 

  43. I. M. Mosa, A. Pattammattel, K. Kadimisetty, P. Pande, M.F. El-Kady, G. W. Bishop, M. Novak, R.B. Kaner, A.K. Basu, C.V. Kumar et al. Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Adv. Energy Mater. 7, 1700358 (2017), doi:10.1002/aenm.201700358.

    Article  CAS  Google Scholar 

  44. D. Pan, J. Zhang, Z. Li, and M. Wu: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010); S. Gupta, T. Smith, A. Banaszak, and J. Boeckl: Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development. Nanomaterials 7, 301–322 (2017).

    Article  CAS  Google Scholar 

  45. J. Bard and M.V. Mirkin, (Eds.) Scanning Electrochemical Microscopy; Marcel Dekker: New York, USA, (2001).

    Google Scholar 

  46. S. Wang, I.S. Cole, D. Zhao, and Q. Li: The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale 8, 7449–7458 (2016).

    Article  CAS  Google Scholar 

  47. L. Efros and M. Rosen: The Electronic Structure of Semiconductor Nanocrystals. Ann. Rev. Mater. Sci. 30, 475–521 (2000).

    Article  CAS  Google Scholar 

  48. S. Gupta and A. Saxena: Nanocarbon materials: Probing the curvature and topology effects using phonon spectra. J. Raman Spectrosc. 40, 1127–1137 (2009).

    Article  CAS  Google Scholar 

  49. M. S. Dresselhaus and P. C. Eklund: Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000).

    Article  CAS  Google Scholar 

  50. B. Wu, S. Hou, Z. Miao, C. Zhang, and Y. Ji: Layer-by-layer self-assembling gold nanorods and glucose oxidase onto carbon nanotubes functionalized sol-gel matrix for an amperometric glucose biosensor. Nanomaterials 5, 1544–1555 (2015).

    Article  CAS  Google Scholar 

  51. E. Laviron: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979).

    Article  CAS  Google Scholar 

  52. R. L. McCreery: Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 108, 2646–2687 (2008).

    Article  CAS  Google Scholar 

  53. X. Shangguan, H. Zhang, and J. Zheng: Direct electrochemistry of glucose oxidase based on its direct immobilization on carbon ionic liquid electrode and glucose sensing. Electrochem. Commun. 10, 1140–1143 (2008).

    Article  CAS  Google Scholar 

  54. H. Razmi and R.M. Rezaei: Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosens. Bioelectron. 41, 498–504 (2013).

    Article  CAS  Google Scholar 

  55. Y. Huang, W. Zhang, H. Xiao, and G. Li: An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron. 21, 817–821 (2005).

    Article  CAS  Google Scholar 

  56. S. Guo, S. Zhang, L. Wu, and S. Sun: Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew. Chem. Int. Ed. 51, 11770–11773 (2012).

    Article  CAS  Google Scholar 

  57. Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, S. Guo, and J. Zhang: Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5, 1816–1819 (2013).

    Article  CAS  Google Scholar 

  58. S. Gupta, A. Banaszak, T. Smith, and N. Dimakis: Molecular sensitivity of metal nanoparticles decorated graphene-family nanomaterials as surface-enhanced Raman scattering (SERS) platforms. J. Raman Spectroscopy 49, 27 Dec. (2017) | https://doi.org/10.1002/jrs.5318.

  59. J. Li, S.N. Tan, and H. Ge: Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Analytical Chim. Acta 335, 137–145 (1996).

    Article  CAS  Google Scholar 

  60. S. Gupta and S.B. Carrizosa: Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy. Appl. Phys. Lett. 109, 243903–243907 (2016) and references therein.

    Article  CAS  Google Scholar 

  61. W. R. McGovern, F. Anariba, and R.L. McCreery: Importance of oxides in carbon/molecule/metal molecular junctions with titanium and copper top contacts. J. Electrochem. Soc. 152, E176–E183 (2005).

    Article  CAS  Google Scholar 

  62. D.A.C. Brownson, D.K. Kampouris, and C.E. Banks: Graphene electrochemistry: Fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 6944–6976 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanju Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Smith, T., Banaszak, A. et al. Graphene Quantum Dots Electrochemistry and Development of Ultrasensitive Enzymatic Glucose Sensor. MRS Advances 3, 831–847 (2018). https://doi.org/10.1557/adv.2018.324

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.324

Navigation