Skip to main content

Advertisement

Log in

Efficient Discovery of Optimal N-Layered TMDC Hetero-Structures

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

A Correction to this article was published on 19 September 2023

This article has been updated

Abstract

Vertical hetero-structures made from stacked monolayers of transition metal dichalcogenides (TMDC) are promising candidates for next-generation optoelectronic and thermoelectric devices. Identification of optimal layered materials for these applications requires the calculation of several physical properties, including electronic band structure and thermal transport coefficients. However, exhaustive screening of the material structure space using ab initio calculations is currently outside the bounds of existing computational resources. Furthermore, the functional form of how the physical properties relate to the structure is unknown, making gradient-based optimization unsuitable. Here, we present a model based on the Bayesian optimization technique to optimize layered TMDC hetero-structures, performing a minimal number of structure calculations. We use the electronic band gap and thermoelectric figure of merit as representative physical properties for optimization. The electronic band structure calculations were performed within the Materials Project framework, while thermoelectric properties were computed with BoltzTraP. With high probability, the Bayesian optimization process is able to discover the optimal hetero-structure after evaluation of only ∼20% of all possible 3-layered structures. In addition, we have used a Gaussian regression model to predict not only the band gap but also the valence band maximum and conduction band minimum energies as a function of the momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. A. Gupta, T. Sakthivel and S. Seal, Prog. Mater. Sci. 73, 44–126 (2015).

    Article  CAS  Google Scholar 

  2. Y. Venkata Subbaiah, K. Saji and A. Tiwari, Adv. Funct. Mater. 26 (13), 2046–2069 (2016).

    Article  CAS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438 (7065), 201–204 (2005).

    Article  CAS  Google Scholar 

  4. F. Deepak, C. Vinod, K. Mukhopadhyay, A. Govindaraj and C. Rao, Chem. Phys. Lett. 353 (5), 345–352 (2002).

    Article  CAS  Google Scholar 

  5. P. R. Wallace, Phys. Rev. 71 (9), 622 (1947).

    Article  CAS  Google Scholar 

  6. A. Jain, Y. Shin and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).

    Article  CAS  Google Scholar 

  7. R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R. S. Sanchez-Carrera, L. Vogt and A. Aspuru-Guzik, Energy Environ. Sci. 4 (12), 4849–4861 (2011).

    Article  CAS  Google Scholar 

  8. K. Rajan, Mater. Today 8 (10), 38–45 (2005).

    Article  CAS  Google Scholar 

  9. R. LeSar, Statistical Analysis and Data Mining: The ASA Data Science Journal 1 (6), 372–374 (2009).

    Article  Google Scholar 

  10. J. Lee, A. Seko, K. Shitara, K. Nakayama and I. Tanaka, Phys. Rev. B 93 (11), 115104 (2016).

    Article  Google Scholar 

  11. T. Gu, W. Lu, X. Bao and N. Chen, Solid State Sci. 8 (2), 129–136 (2006).

    Article  CAS  Google Scholar 

  12. C. Kim, G. Pilania and R. Ramprasad, J. Phys. Chem. C 120 (27), 14575–14580 (2016).

    Article  CAS  Google Scholar 

  13. C. Kim, G. Pilania and R. Ramprasad, Chem. Mater. 28 (5), 1304–1311 (2016).

    Article  CAS  Google Scholar 

  14. Z. Zhaochun, P. Ruiwu and C. Nianyi, Mater. Sci. Eng. B 54 (3), 149–152 (1998).

    Article  Google Scholar 

  15. T. D. Huan, A. Mannodi-Kanakkithodi and R. Ramprasad, Phys. Rev. B 92 (1), 014106 (2015).

    Article  Google Scholar 

  16. A. I. Forrester, A. Sóbester and A. J. Keane, presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007 (unpublished).

  17. A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman and R. Ramprasad, Sci. Rep. 6, 20952 (2016).

    Article  Google Scholar 

  18. E. Brochu, V. M. Cora and N. De Freitas, arXiv preprint arXiv:1012.2599 (2010).

  19. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, Proc. IEEE 104 (1), 148–175 (2016).

    Article  Google Scholar 

  20. J. Snoek, H. Larochelle and R. P. Adams, presented at the Advances in Neural Information Processing Systems, 2012 (unpublished).

  21. C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning. (MIT press Cambridge, 2006).

  22. M. C. Kennedy and A. O’Hagan, Biometrika 87 (1), 1–13 (2000).

    Article  Google Scholar 

  23. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner and G. Ceder, APL Mater. 1 (1), 011002 (2013).

    Article  Google Scholar 

  24. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  25. P. E. Blöchl, Phys. Rev. B 50 (24), 17953 (1994).

    Article  Google Scholar 

  26. G. Kresse and J. Furthmüller, Phys. Rev. B 54 (16), 11169 (1996).

    Article  CAS  Google Scholar 

  27. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6 (1), 15–50 (1996).

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996).

    Article  CAS  Google Scholar 

  29. G. K. Madsen and D. J. Singh, Comput. Phys. Commun. 175 (1), 67–71 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was updated to correct Lindsay Bassman Oftelie’s name.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassman Oftelie, L., Rajak, P., Kalia, R.K. et al. Efficient Discovery of Optimal N-Layered TMDC Hetero-Structures. MRS Advances 3, 397–402 (2018). https://doi.org/10.1557/adv.2018.260

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.260

Navigation