Abstract
Vertical hetero-structures made from stacked monolayers of transition metal dichalcogenides (TMDC) are promising candidates for next-generation optoelectronic and thermoelectric devices. Identification of optimal layered materials for these applications requires the calculation of several physical properties, including electronic band structure and thermal transport coefficients. However, exhaustive screening of the material structure space using ab initio calculations is currently outside the bounds of existing computational resources. Furthermore, the functional form of how the physical properties relate to the structure is unknown, making gradient-based optimization unsuitable. Here, we present a model based on the Bayesian optimization technique to optimize layered TMDC hetero-structures, performing a minimal number of structure calculations. We use the electronic band gap and thermoelectric figure of merit as representative physical properties for optimization. The electronic band structure calculations were performed within the Materials Project framework, while thermoelectric properties were computed with BoltzTraP. With high probability, the Bayesian optimization process is able to discover the optimal hetero-structure after evaluation of only ∼20% of all possible 3-layered structures. In addition, we have used a Gaussian regression model to predict not only the band gap but also the valence band maximum and conduction band minimum energies as a function of the momentum.
Similar content being viewed by others
Change history
19 September 2023
A Correction to this paper has been published: https://doi.org/10.1557/s43580-022-00380-6
References
A. Gupta, T. Sakthivel and S. Seal, Prog. Mater. Sci. 73, 44–126 (2015).
Y. Venkata Subbaiah, K. Saji and A. Tiwari, Adv. Funct. Mater. 26 (13), 2046–2069 (2016).
Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Nature 438 (7065), 201–204 (2005).
F. Deepak, C. Vinod, K. Mukhopadhyay, A. Govindaraj and C. Rao, Chem. Phys. Lett. 353 (5), 345–352 (2002).
P. R. Wallace, Phys. Rev. 71 (9), 622 (1947).
A. Jain, Y. Shin and K. A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-Evrenk, R. S. Sanchez-Carrera, L. Vogt and A. Aspuru-Guzik, Energy Environ. Sci. 4 (12), 4849–4861 (2011).
K. Rajan, Mater. Today 8 (10), 38–45 (2005).
R. LeSar, Statistical Analysis and Data Mining: The ASA Data Science Journal 1 (6), 372–374 (2009).
J. Lee, A. Seko, K. Shitara, K. Nakayama and I. Tanaka, Phys. Rev. B 93 (11), 115104 (2016).
T. Gu, W. Lu, X. Bao and N. Chen, Solid State Sci. 8 (2), 129–136 (2006).
C. Kim, G. Pilania and R. Ramprasad, J. Phys. Chem. C 120 (27), 14575–14580 (2016).
C. Kim, G. Pilania and R. Ramprasad, Chem. Mater. 28 (5), 1304–1311 (2016).
Z. Zhaochun, P. Ruiwu and C. Nianyi, Mater. Sci. Eng. B 54 (3), 149–152 (1998).
T. D. Huan, A. Mannodi-Kanakkithodi and R. Ramprasad, Phys. Rev. B 92 (1), 014106 (2015).
A. I. Forrester, A. Sóbester and A. J. Keane, presented at the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007 (unpublished).
A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman and R. Ramprasad, Sci. Rep. 6, 20952 (2016).
E. Brochu, V. M. Cora and N. De Freitas, arXiv preprint arXiv:1012.2599 (2010).
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas, Proc. IEEE 104 (1), 148–175 (2016).
J. Snoek, H. Larochelle and R. P. Adams, presented at the Advances in Neural Information Processing Systems, 2012 (unpublished).
C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning. (MIT press Cambridge, 2006).
M. C. Kennedy and A. O’Hagan, Biometrika 87 (1), 1–13 (2000).
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner and G. Ceder, APL Mater. 1 (1), 011002 (2013).
S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, Comput. Mater. Sci. 68, 314–319 (2013).
P. E. Blöchl, Phys. Rev. B 50 (24), 17953 (1994).
G. Kresse and J. Furthmüller, Phys. Rev. B 54 (16), 11169 (1996).
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6 (1), 15–50 (1996).
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996).
G. K. Madsen and D. J. Singh, Comput. Phys. Commun. 175 (1), 67–71 (2006).
Author information
Authors and Affiliations
Additional information
This article was updated to correct Lindsay Bassman Oftelie’s name.
Rights and permissions
About this article
Cite this article
Bassman Oftelie, L., Rajak, P., Kalia, R.K. et al. Efficient Discovery of Optimal N-Layered TMDC Hetero-Structures. MRS Advances 3, 397–402 (2018). https://doi.org/10.1557/adv.2018.260
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.260