Skip to main content

Advertisement

Log in

Optothermally Tuned Charge Transfer Plasmons in Au-Ge2Sb2Te5 Core-Shell Assemblies

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Tunable plasmonic resonances across the visible and near infrared spectra have provided novel ways to develop next-generation nanophotonic devices. Here, by utilizing optothermally controllable phase-changing material (PCM), we studied highly tunable charge transfer plasmon (CTP) resonance modes. To this end, we have designed a two-member dimer assembly including gold cores and Ge2Sb2Te5 (GST) shells in distant, touching, and overlapping conditions. We successfully demonstrated that toggling between amorphous (dielectric) and crystalline (conductive) phases of GST allows for achieving tunable dipolar and CTP resonances along the near-infrared spectrum. The proposed dimer structures can help forming optothermally controlled devices without further morphological variations in the geometry of the design, and having strong potential for advanced plasmon modulation and fast data routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Barnes, J. Opt. A. Pure Appl. Opt. 8, S87 (2006).

    Google Scholar 

  2. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).

    CAS  Google Scholar 

  3. C. T. Chantler and J. D. Bourke, J. Phys. Chem. A 118, 909 (2014).

  4. Q. Bao and K. P. Loh, ACS Nano 6, 3677 (2012).

  5. C. Novo, A. M. Funston and P. Mulvaney, Nat. Nanotechnol. 3, 598 (2008).

  6. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua and A. G. Borisov, Nano Lett. 12, 1333 (2012).

  7. S. F. Tan, L. Wu, J. K. Yang, P. Bai, M. Bosman and C. A. Nijhuis, Science 343, 1496 (2014).

  8. A. Ahmadivand, B. Gerislioglu, R. Sinha, M. Karabiyik and N. Pala, Sci. Rep. 7, 42807 (2017).

  9. B. Gerislioglu, A. Ahmadivand, M. Karabiyik, R. Sinha and N. Pala, Adv. Electron. Mater. 3, 8 (2017).

  10. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak and N. I. Zheludev, Adv. Mater. 25, 3050 (2013).

  11. N. I. Zheludev and Y. Kivshar, Nat. Mater. 11, 917 (2012).

  12. G. Bakan, B. Gerislioglu, F. Dirisaglik, Z. Jurado, L. Sullivan, A. Dana, C. Lam, A. Gokirmak and H. Silva, J. Appl. Phys. 120, 164504 (2016).

  13. J. Liu and J. Wei, J. Appl. Phys. 106, 083112 (2009).

  14. T. Zhang, Z. Song, B. Liu, S. Feng and B. Chen, Solid State Electron. 51, 950 (2007).

  15. A. Sebastian, M. Le Gallo and D. Krebs, Nat. Commun. 5, 4317 (2014).

  16. F. Zheng, Z. Chen and J. Zhang, IEEE Microw. Guided Wave Lett. 9, 441 (1999).

  17. D. E. Aspnes, Am. J. Phys. 50, 704 (1916).

  18. E. D. Palik, Handbook of optical constants of solids, (Academic press, San Diego, CA, 1998).

  19. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

  20. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson and M. Wuttig, Nat. Mater. 7, 653 (2008).

  21. L. Wu, H. Duan, P. Bai, M. Bosman, J. K. Yang and E. Li, ACS Nano 7, 707 (2013).

  22. A. E. Miroshnichenko and Y. S. Kivshar, Nano Lett. 12, 6459 (2012).

  23. F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander and N.J. Halas, ACS Nano 9, 6428 (2015).

    CAS  Google Scholar 

  24. S. J. H. Jeans, The mathematical theory of electricity and magnetism (Cambridge University, 1908).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerislioglu, B., Ahmadivand, A. & Pala, N. Optothermally Tuned Charge Transfer Plasmons in Au-Ge2Sb2Te5 Core-Shell Assemblies. MRS Advances 3, 1919–1924 (2018). https://doi.org/10.1557/adv.2018.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.258

Navigation