Skip to main content

Advertisement

Log in

Modulating the lifetime of the charge-separated state in photosynthetic reaction center by out-of-protein electrostatics

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The photosynthetic reaction center (RC) is an integral membrane protein that, upon absorption of photons, generates a hole-electron couple with a yield close to one. This energetic state has numerous possible applications in several biotechnological fields given that its lifetime is long enough to allow non-metabolic ancillary redox chemistry to take place. Here we focus on RCs reconstituted in liposomes, formed with sole phospholipids or in blends with other lipids, and show that the electrical charge sitting on the polar head of such hydrophobic molecules does play an important role on the stability of the hole-electron couple. More specifically this study shows that the presence of negative charges in the surrounding of the protein stabilizes the charge-separated state while positive charges have a strong opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tangorra, R.R., et al., Hybrid Interfaces for Electron and Energy Transfer Based on Photosynthetic Proteins, in Handbook of Photosynthesis, Third Edition, M. Pessarakli, Editor. 2016, CRC Press. p. 201–220.

  2. Maróti, P. and M. Trotta, Artificial Photosynthetic Systems, in CRC Handbook of Organic Photochemistry and Photobiology, Third Edition - Two Volume Set, A. Griesbeck, M. Oelgemöller, and F. Ghetti, Editors. 2012, CRC Press. p. 1289–1324.

  3. Cardona, T., A fresh look at the evolution and diversification of photochemical reaction centers. Photosynthesis Research, 2015. 126(1): p. 111–134.

    Article  CAS  Google Scholar 

  4. Gisriel, C., et al., Structure of a symmetric photosynthetic reaction center–photosystem. Science, 2017.

  5. Venturoli, G., et al., Temperature dependence of charge recombination from the P+QA- abd P+QB- states in photosynthetic reaction centres isolated from thermophilic bacterium Chloroflexus aurantiacus. Eur. J. Biochem., 1991. 202: p. 625–634.

    Article  CAS  Google Scholar 

  6. Zabelin, A.A., et al., FTIR Spectroscopy of the Reaction Center of Chloroflexus aurantiacus: Photooxidation of the Primary Electron Donor. Biochemistry-Moscow, 2012. 77(2): p. 157–164.

    Article  CAS  Google Scholar 

  7. Feher, G., et al., Structure and function of bacterial photosynthetic reaction centres. Nature, 1989. 339: p. 111–116.

    Article  CAS  Google Scholar 

  8. Deisenhofer, J. and H. Michel, The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. Science, 1989. 245(4925): p. 1463–73.

    Article  CAS  Google Scholar 

  9. Singer, S.J. and G.L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes. Science, 1972. 175(4023): p. 720.

    Article  CAS  Google Scholar 

  10. Allen, J.P., et al., Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proceedings of the National Academy of Sciences, 1987. 84(17): p. 6162–6166.

    Article  CAS  Google Scholar 

  11. Allen, J.P., et al., Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proceedings of the National Academy of Sciences, 1987. 84(16): p. 5730–5734.

    Article  CAS  Google Scholar 

  12. Yeates, T.O., et al., Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proceedings of the National Academy of Sciences, 1988. 85(21): p. 7993–7997.

    Article  CAS  Google Scholar 

  13. Allen, J.P., et al., Structure of the reaction center from Rhodobacter sphaeroides R-26: protein-cofactor (quinones and Fe2+) interactions. Proceedings of the National Academy of Sciences, 1988. 85(22): p. 8487–8491.

    Article  CAS  Google Scholar 

  14. Koepke, J., et al., pH Modulates the Quinone Position in the Photosynthetic Reaction Center from Rhodobacter sphaeroides in the Neutral and Charge Separated States. Journal of Molecular Biology, 2007. 371(2): p. 396–409.

    Article  CAS  Google Scholar 

  15. Peluso, A., et al., A plausible mechanism of electron transfer between quinones in photosynthetic reaction centers. J Theor Biol, 2000. 207(1): p. 101–5.

    Article  CAS  Google Scholar 

  16. Di Donato, M., A. Peluso, and G. Villani, Electron Transfer between Quinones in Photosynthetic Reaction Centers. The Journal of Physical Chemistry B, 2004. 108(9): p. 3068–3077.

    Article  CAS  Google Scholar 

  17. Kressel, L., et al., High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. Biochim Biophys Acta, 2014. 1837(11): p. 1892–903.

    Article  CAS  Google Scholar 

  18. Kleinfeld, D., M.Y. Okamura, and G. Feher, Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. II. Free energy and kinetic relations between the acceptor states QA–QB– and QAQ2–B. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1985. 809(3): p. 291–310.

    Article  CAS  Google Scholar 

  19. Kleinfeld, D., M.Y. Okamura, and G. Feher, Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQ–B and free energy and kinetic relations between Q–AQB and QAQ–B. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1984. 766(1): p. 126–140.

    Article  CAS  Google Scholar 

  20. Warncke, K. and P.L. Dutton, Influence of Q(a)-Site Redox Cofactor Structure on Equilibrium Binding, Insitu Electrochemistry, and Electron-Transfer Performance in the Photosynthetic Reaction Center Protein. Biochemistry, 1993. 32(18): p. 4769–4779.

    CAS  Google Scholar 

  21. Giangiacomo, K.M., M.R. Gunner, and P.L. Dutton, Qa and Qb Site Control of Quinone Electrochemistry in the Photosynthetic Reaction Center from Rhodobacter-Sphaeroides. Biophysical Journal, 1990. 57(2): p. A566–A566.

    Google Scholar 

  22. Maroti, P., Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides. European Biophysics Journal with Biophysics Letters, 2008. 37(7): p. 1175–1184.

    CAS  Google Scholar 

  23. Turzo, K., et al., Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophysical Journal, 2000. 79(1): p. 14–25.

    CAS  Google Scholar 

  24. Emese, A., et al., The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria. Photosynthesis Research, 2012. 112(2): p. 129–140.

    Article  CAS  Google Scholar 

  25. Kleinfeld, D., M.Y. Okamura, and G. Feher, Charge recombination kinetics as a probe of protonation of the primary acceptor in photosynthetic reaction centers. Biophys J, 1985. 48(5): p. 849–52.

    Article  CAS  Google Scholar 

  26. Kim, I., et al., Modeling gating charge and voltage changes in response to charge separation in membrane proteins. Proc Natl Acad Sci U S A, 2014. 111(31): p. 11353–8.

    Article  CAS  Google Scholar 

  27. Li, L., et al., On the Dielectric “Constant” of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi. Journal of Chemical Theory and Computation, 2013. 9(4): p. 2126–2136.

    Article  CAS  Google Scholar 

  28. Agostiano, A., F. Milano, and M. Trotta, Investigation on the detergent role in the function of secondary quinone in bacterial reaction centers. European Journal of Biochemistry, 1999. 262(2): p. 358–364.

    Article  CAS  Google Scholar 

  29. Milano, F., et al., Characterisation of RC-proteoliposomes at different RC/lipid ratios. Photosynthesis research, 2009. 100(2): p. 107–12.

    Article  CAS  Google Scholar 

  30. Muh, F., J. Rautter, and W. Lubitz, Effects of zwitterionic detergents on the primary donor of bacterial reaction centers. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1996. 100(12): p. 1974–1977.

    Article  Google Scholar 

  31. Muh, F., J. Rautter, and W. Lubitz, Two distinct conformations of the primary electron donor in reaction centers from Rhodobacter sphaeroides revealed by ENDOR/TRIPLE-spectroscopy. Biochemistry, 1997. 36(14): p. 4155–62.

    Article  CAS  Google Scholar 

  32. Trotta, M., et al., Response of membrane protein to the environment: the case of photosynthetic Reaction Centre. Materials Science & Engineering. C, Biomimetic and Supramolecular Systems, 2002. 22(2): p. 263–267.

    Article  Google Scholar 

  33. Agostiano, A., et al., Charge recombination of photosynthetic reaction centres in different membrane models. Gazzetta Chimica Italiana, 1995. 125: p. 615–622.

    CAS  Google Scholar 

  34. Overfield, R.E. and C.A. Wraight, Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 1. Studies with neutral membranes. Biochemistry, 1980. 19(14): p. 3322–7.

    CAS  Google Scholar 

  35. Overfield, R.E. and C.A. Wraight, Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 2. Studies with negative membranes. Biochemistry, 1980. 19(14): p. 3328–34.

    CAS  Google Scholar 

  36. Agostiano, A., et al., pH-sensitive fluorescent dye as probe for proton uptake in photosynthetic reaction centers. Bioelectrochemistry, 2004. 63(1–2): p. 125–8.

    Article  CAS  Google Scholar 

  37. Nagy, L., et al., Protein/lipid interaction in the bacterial photosynthetic reaction center: Phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochemistry, 2004. 43(40): p. 12913–12923.

    Article  CAS  Google Scholar 

  38. Trotta, M., et al., Protein/lipid interaction in bacterial photosynthetic reaction center: the role of phosphatidylcholine and phosphatidylglycerol in charge stabilization. Biochimica Et Biophysica Acta-Bioenergetics, 2004. 1658: p. 263–263.

    Article  CAS  Google Scholar 

  39. Isaacson, R.A., et al., Electronic structure of Q-A in reaction centers from Rhodobacter sphaeroides. I. Electron paramagnetic resonance in single crystals. Biophysical Journal, 1995. 69(2): p. 311–22.

    CAS  Google Scholar 

  40. Milano, F., et al., Kinetics of the quinone binding reaction at the Q(B) site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. European Journal of Biochemistry, 2003. 270(23): p. 4595–4605.

    Article  CAS  Google Scholar 

  41. Almog, S., et al., Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles. Biochemistry, 1986. 25(9): p. 2597–605.

    Article  CAS  Google Scholar 

  42. Milano, F., et al., Enhancing the Light Harvesting Capability of a Photosynthetic Reaction Center by a Tailored Molecular Fluorophore. Angewandte Chemie, 2012. 124(44): p. 11181–11185.

    Article  Google Scholar 

  43. McAuley, K.E., et al., Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14706–11.

    Article  CAS  Google Scholar 

  44. Catucci, L., et al., Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry, 2004. 43(47): p. 15066–15072.

    Article  CAS  Google Scholar 

  45. Rinyu, L., et al., Modulation of the free energy of the primary quinone acceptor (QA) in Reaction Centers from Rhodobacter sphaeroides: Contribution from the protein and the protein-lipid (cardiolipin) interactions. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2004. 1655: p. 93–101.

    Article  CAS  Google Scholar 

  46. Dezi, M., et al., Stabilization of charge separation and cardiolipin confinement in antenna-reaction center complexes purified from Rhodobacter sphaeroides. Biochimica Et Biophysica Acta-Bioenergetics, 2007. 1767(8): p. 1041–1056.

    Article  CAS  Google Scholar 

  47. De Leo, V., et al., Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. Journal of Lipid Research, 2009. 50(2): p. 256–264.

    Article  CAS  Google Scholar 

  48. Catucci, L., et al., Oxidoreductase activity of chromatophores and purified cytochrome bc (1) complex from Rhodobacter sphaeroides: a possible role of cardiolipin. Journal of Bioenergetics and Biomembranes, 2012. 44(4): p. 487–493.

    Article  CAS  Google Scholar 

  49. Wydro, P., The influence of cardiolipin on phosphatidylglycerol/phosphatidylethanolamine monolayers—Studies on ternary films imitating bacterial membranes. Colloids and Surfaces B: Biointerfaces, 2013. 106: p. 217–223.

    Article  CAS  Google Scholar 

  50. Operamolla, A., et al., “Garnishing” the photosynthetic bacterial reaction center for bioelectronics. Journal of Materials Chemistry C, 2015. 3(25): p. 6471–6478.

    Article  CAS  Google Scholar 

  51. De Leo, V., et al., Effect of ultrasound on the function and structure of a membrane protein: The case study of photosynthetic Reaction Center from Rhodobacter sphaeroides. Ultrasonics Sonochemistry, 2017. 35: p. 103–111.

    Article  CAS  Google Scholar 

  52. Swainsbury, D.J., et al., Evaluation of a biohybrid photoelectrochemical cell employing the purple bacterial reaction centre as a biosensor for herbicides. Biosens Bioelectron, 2014. 58: p. 172–8.

    Article  CAS  Google Scholar 

  53. Swainsbury, D.J., et al., Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces. Biochim Biophys Acta, 2016. 1857(12): p. 1829–1839.

    Article  CAS  Google Scholar 

  54. Tangorra, R.R., et al., Assembly of a photosynthetic reaction center with ABA tri-block polymersomes: highlights on protein localization. Photochemical & Photobiological Sciences, 2015. 14(10): p. 1844–1852.

    Article  CAS  Google Scholar 

  55. Milano, F., et al., Functional Enzymes in Nonaqueous Environment: The Case of Photosynthetic Reaction Centers in Deep Eutectic Solvents. ACS Sustainable Chemistry & Engineering, 2017. 5(9): p. 7768–7776.

    Article  CAS  Google Scholar 

  56. Hassan Omar, O., et al., Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers. Bioconjugate Chemistry, 2016. 27(7): p. 1614–1623.

    Article  CAS  Google Scholar 

  57. la Gatta, S., et al., A far-red emitting aryleneethynylene fluorophore used as light harvesting antenna in hybrid assembly with the photosynthetic reaction center. MRS Advances, 2016. 1(7): p. 495–500.

    Article  CAS  Google Scholar 

  58. Dutta, P.K., et al., Reengineering the optical absorption cross-section of photosynthetic reaction centers. J Am Chem Soc, 2014. 136(12): p. 4599–604.

    Article  CAS  Google Scholar 

  59. Dutta, P.K., et al., A DNA-Directed Light-Harvesting/Reaction Center System. Journal of the American Chemical Society, 2014. 136(47): p. 16618–16625.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milano, F., Tangorra, R.R., Agostiano, A. et al. Modulating the lifetime of the charge-separated state in photosynthetic reaction center by out-of-protein electrostatics. MRS Advances 3, 1497–1507 (2018). https://doi.org/10.1557/adv.2018.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.242

Navigation