Abstract
Density Functional Theory (DFT) calculations study of Cu doped {0001} and {01–12} surfaces of hematite for enhanced water splitting have been carried out. The doping was restricted to planes in the vicinity of the surface, specifically from the top most layers to the third inner layer of Fe atoms. Thermodynamic stabilities were evaluated based on surface energies and formation energies. The evaluation of thermodynamic stabilities (negative formation energy values) shows that the systems are thermodynamically stable which suggest that they can be synthesized in the laboratory under favorable conditions. Doping on the top most layer yields the energetically most favorable structure. The calculated charge density difference plots showed the concentration of charge mainly at the top of the surface (termination region), and this charge depleted from the Cu atom to the surrounding Fe and O atoms. This phenomenon (concentration of charge at the top of the surface) is likely to reduce the distance moved by the charge carriers, decrease in charge recombination leading to facile transfer of charge to the adsorbate and, suggesting improved photoelectrochemical water oxidation activity of hematite. The analysis of electron electronic structure reveals that Cu doped surface systems does not only decrease the band gap but also leads to the correct conduction band alignment for direct water splitting without external bias voltage.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References:
Y-S. Hu, A. K leiman-Shwarsctein, A. J. Forman, D. Hazen, J-N Park and E. W. McFarland, Chem. Matter, 20, 3803 (2008)
M. Barroso, S. R. Pendlerbury, A. J. Cowan and J. R. Durrant, Chem. Sci., 4, 2724 (2013)
H. J. Pan, X. Y. Meng and G. W. Qin, Phys.Chem. Chem. Phys, 16, 25442 (2014).
J. A. Glasscock, P. R. F. Barnes, I. C. Plumb and N. Savvides, J. Phys. Chem. C, 111, 16477–16488 (2007).
H. Pan, X. Meng, D. Liu, S. Li and G. Qin, Phys.Chem. Chem. Phys., 17, 22179 (2015).
N. Mirbagheri, D. Wang, C. Peng, J. Wang, Q. Huang, C. Fan and E. E. Ferapontova, ACS Catalysis, 4, 2006–2015 (2014).
J. J. Wang, Y. Hu, R. Toth, G. Fortunato, A. Braun, A facile nonpolar organic solution process of nanostructured hematite photoanode with efficiency and stability for splitting, J. Matter Chem A, 4, 2821–2825 (2016).
F. Boudoire, R. Toth, J. Heier, A. Braun, E. C. Constable, Photonic light trapping in self-organized all-oxide microspheroids impacts on photoelectrochemical water splitting, Energy & Environmental Science, 7, 2680–2688 (2014).
N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. M. Deng and J. Z. Zhang, J. Phys. Chem. B, 102, 770–776 (1998).
Y. Hu, F. Boudoire, I. Hermann-Geppert, P Bogdanoff, G. Tsekouras, B.S. Mun, G. Fortunato, M. Graetzel, A. Braun, Molecular Origin and Electrochemical Influence of Capacitance Surfaces States on Iron Oxide Photoanodes: The Journal of Physical Chemistry C, 120, 3250–3258 (2016).
X. Y. Meng, G. W. Qin, S. Li, X. H. Wen, Y. P. Ren, W. L, Pei and L. Zuo, Applied Physics Letters, 98, 112104 (2011).
R. Franking, L. S. Li, M. A. Lukowski, F. Meng, Y. Z. Tan, R. J. Hamers and S. Jin, Energy Environ. Sci, 6, 500–512 (2013).
Z. Zhou, P. Huo, L. Guo and O. V. Prezhdo, J. Phy. Chem. C, 119, 26303–26310 (2015).
S. Kumari, A. P. Singh, C. Tripathi, D. Chauhan, S. Dass, R. Shrivastav, V. Gupta, K. Screenivas and V. R. Satsangi, Int. J. Photoenergy, 87467 (2007).
S. Chang and W. Liu, Applied Catalysis B: Environmental, 101, 333–342 (2011).
K. Nagaveni, M. S. Hegde and G. Madras, J. Phys Chem. B, 108, 20204–20212 (2004).
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.I. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, I. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, I. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).
P. Hohenberg and W. Kohn, Phys. Rev, 136, B864 (1964)
W. Kohn and L. J. Sham, Phys. Rev, 140, A1133 (1965).
J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett, 77, 3865 (1996).
A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
S. L. Dudarev, A. I. Liechtenstein, M. R. Castell, G. A. D. Briggs and A. P. Sutton, Phys. Rev. B 56, 4900 (1997).
S. L. Dudarev, G. A. Botton, S.Y. Savrasov, C. J. Humphreys and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
Z. Zhou, J. Shi and L. Guo, Computational Materials Science, 113, 117–122 (2016).
M. Catti, G. Valerio and R. Dovesi, Phys. Rev. B 51, 7441–7450 (1995).
L. P. Liao and E. A. Carter, J. Phy. Chem. C, 13, 15189–15199 (2011).
A. Rohrbach, J. Hafner and G. Kresse, Phys. Rev. B 70, 125426 (2004).
P. Garg, S. Kumar, I. Choudhuri, A. Mahata and B. Pathak, J. Phys. Chem. C, 120, 7052–7060 (2016).
N. Y. Dzade, A. Roldan and N. H. De Leeuw, Minerals, 4, 89–115 (2014).
N. H. De Leeuw and T. G. Cooper, Geochim. Cosmochin. Acta, 71, 1655–1673 (2007).
W. C. Mackrodt, Phys. Chem. Miner. 15, 228–237 (1988).
N. J. Reeves and S. Mann, J. Chem. Soc. Faraday Trans. 87, 3875–3880 (1991).
J. Wang, H. Sun, J. Huang, Q. Li and J. Yang, J. Phys. Chem. C, 118, 7451–7457 (2014).
Author information
Authors and Affiliations
Rights and permissions
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Simfukwe, J., Mapasha, R.E., Braun, A. et al. Density Functional Theory study of Cu doped {0001} and {01\(\overline 1 \)2} surfaces of hematite for water splitting. MRS Advances 3, 669–678 (2018). https://doi.org/10.1557/adv.2018.180
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.180