Abstract
Chlorophenols are among the priority listed water contaminants due to their estrogenic, mutagenic or carcinogenic health effects. The Ag/ZnO nanocomposites (NCs) were synthesized, characterized and tested for photacatalytic degradation of chlorophenols in water. The synthesis was done using zinc nitrate hexahydrate (ZnNO3. 6H2O) precursor and sodium hydroxide (NaOH). Silver nitrate (AgNO3) was added to ZnO and reduced with sodium brohydride to produce the silver nanoparticles (NPs) within the ZnO structure. The silver content was varied from 1, 3 and 5wt% for optimisation. The nanocomposites were characterised using ultraviolet - visible spectroscopy (UV-Vis), photolumniscence (PL), x-ray diffraction (XRD), and scanning transmission electron microscopy (STEM). The nanocomposites were tested for their photocatalytic properties on 2- chlorophenol (CP), 2-chlorophenol (CP) and 2,4- dichlorophenol (DCP) in water. The UV-Vis results showed that, as the amount of silver was increased a gradual slight red shift was observed. The XRD patterns for Ag/ZnO exhibited peaks that were characteristic of the hexagonal wurzite structure and peaks characteristic for Ag appeared at 38.24o, 44.37o, 64.67o and 77.58o corresponding to (111), (200), (220) and (311) reflection planes. STEM results showed the presence of Ag in ZnO with ZnO appearing as rods shapes. The EDX elemental analysis confirmed the presence of Ag in the Ag/ZnO nanocomposites with no contaminants peaks. On testing the nanocomposites for phohotocatalytic degradation of chlorophenols, addition of Ag to ZnO improved degradation of the chlorophenols compared to the pristine ZnO.
Similar content being viewed by others
References
M. K. Seery, R. George, P. Floris, and S. C. Pillai, J. Photochem. Photobiol. A: Chem 189, 258–263 (2007).
M. A. Behnajady, N. Modirshahla, and R. Hamzavi, J. Hazard. Mater. B 133, 226–232 (2006).
W. Smith, S. Maob, G. Lu, A. Catlett, and J. Chen, Chem. Phys. Lett. 485, 171–175 (2010).
N. Bahadur, K. Jai, A. Srivastava, G. Govind R., D. Haranath, and M. S. Dulat, Chem. Phys. Mater. 124, 600–608 (2010).
M. A. Raza, Z. Kanwal, A. Rauf, A. N. Sabri, S. Riaz, and S. Naseem, Nanomaterials 6, (2016).
E. Mosquera, C. Rojas-Michea, M. Morel, F. Gracia, V. Fuenzalida, and R. A. Zárate, Applied Surface Science 347, 561–568 (2015).
Y. Cheng, L. An, J. Lan, F. Gao, R. Tan, X. Li, and G. Wang, Materials Research Bulletin 48, 4287–4293 (2013).
C. Jaramillo-Páez, J. A. Navío, and M. C. Hidalgo Journal of Photochemistry and Photobiology A: Chemistry 356, 112–122 (2018).
N. Singh, R. Chakraborty, and R. K. Gupta, Journal of Environmental Chemical Engineering 6, 459–467 (2018).
J. Xie and Q. Wu, Materials Letters 64, 389–392 (2010).
S. K. Karn and S. K. Chakrabarti, Int. Recycl. Org. Waste Agricult. 4, 53–62 (2015).
A. E. Ghaly, R. Ananthashankar, M. Alhattab, and V. V. Ramakrishnan J Chem Eng Process Techno 5, 182–200 (2014).
T. Ge, J. Han, Y. Qi, X. Gu, L. Ma, C. Zhang, S. Naeem, and D. Huang, Aquat. Toxocol. 184, 78–93 (2017).
E. O. Igbinosa, E. E. Odjadjare, V. N. Chigor, I. H. Igbinosa, A. O. Emoghene, F. O. Ekhaise, N. O. Igiehon, and O. G. Idemudia, Sci. World J. (2013).
H. Aby, A. Kshirsagar, and P. K. Khanna J. Mater. Sci. Nano-technol. 4, (2016).
P. Manikandan, P. N. Palanisamy, R. Ramya, and D. Nalini, International Journal of Emerging Technologies in Computational and Applied Sciences 9, 148–151 (2014).
B. Otieno, S. Apollo, B. Naidoo, and A. Ochieng, “Response surface methodology modelling of diazinon photodegradation using TiO2-ZnO.29th–30th December 2016, ISBN: 978-93-86083-34-0,” in Proceedings of ISERD International Conference, Anonymous (, 29th–30th December 2016).
A. Kumar, K. Kaur, and S. Sharma, Indian J. Pharm.Biol. Resour. 1, 16–24 (2013).
W. Xie, Y. Li, W. Sun, J. Huang, H. Hao Xie, and X. Zhao,, ” Journal of Photochemistry and Photobiology A: Chemistry 216, 149–155 (2010).
E. J. Guidelli, O. Baffa, and D. R. Clarke, Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence (2015).
W. W. Lu, S. Y. Gao, and J. J. Wang, Journal of Physysics and Chemistry C 112, 16792–16800 (2008).
J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong, Solar Energy Materials & Solar Cells 90, 1773–1787 (2006).
X. Lu, W. Zhang, Q. Zhao, L. Wang, and C. Wang, e-Polymers, 6, 430–437 (2013).
K. Jyoti, M. Baunthiyal, and A. Singh, Journal of Radiation Research and Applied Sciences 9, 217–227 (2016).
M. K. Talari, A. B. A. Majeed, D. K. Tripathi, and M. Tripathy, Chemical and Phamaceutical Bulletin 60, 818–824 (2012).
N. Sharma, J. Kumar, S. Thakur, S. Sharma, and V. Vikas ShrivastavaDrug Invention Today 5, 50–54 (2013).
A. Gnanaprakasam, V. M. Sivakumar, and M. Thirumarimurugan,, Indian Journal of Materials Science 1–16 (2015).
S. Ahmed, M. G. Rasul, W. N. Martens, R. J. Brown, and M. A. Hashib, Desalination 261, 3–18 (2010).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kotlhao, K., Mtunzi, F.M., Pakade, V. et al. Enhancing the photocatalytic degradation of selected chlorophenols using Ag/zno nanocomposites. MRS Advances 3, 2129–2136 (2018). https://doi.org/10.1557/adv.2018.170
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.170