Skip to main content
Log in

Control of p- and n-type Conduction in Thermoelectric Non-doped Mg2Si Thin Films Prepared by Sputtering Method

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A method for controlling the conduction-type in Mg2Si films without doping is investigated. Mg2Si films exhibit p-type conduction after a post-heat treatment up to 500 °C in atmospheric He. However, covering the films with Mg ribbon during a subsequent heat treatment at 500 °C converts the conduction to n-type, demonstrating that the heat treatment atmosphere can control the conduction type. Based on the reported first principles calculations suggesting that interstitial Mg and Mg vacancies in Mg2Si are the origins of n-type and p-type conduction, respectively, the post-heat treatment in He induces Mg vacancies due to the evaporation of Mg from the film, resulting in p-type conduction. The subsequent heat treatment when the film is covered with Mg ribbon fills the Mg vacancies and the additional interstitial Mg is incorporated, resulting in n-type conduction. These observations differ from the reported data for heat treatment of stable n-type conduction in non-doped Mg2Si-sintered bodies and may realize a novel control method for the conduction type in Mg2Si films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kato, Y. H. Sago, and H. Fujiwara, J. Appl. Phys. 110, 063723-1-5 (2011).

    Article  Google Scholar 

  2. N. G. Galkin, S. V. Vavanova, A. M. Maalsov, K. N. Galkin, A. V. Garasimenko, and T. A. Kaidalova, Thin Solid Films 515, 8230–8236 (2007).

    Article  CAS  Google Scholar 

  3. A. Vantomme, G. Langouche, J. E. Mahan, and J. P. Becker, Microelectron Eng. 50, 237–242 (2000).

    Article  CAS  Google Scholar 

  4. J. Tani and H. Kido, J. Ceram. Soc. Jpn. 123, 298–301 (2015).

    Article  CAS  Google Scholar 

  5. T. Kajikawa, K. Shiba, K. Shiraishi, and T. Ito, 17th Inter. Conf. Proc. Thermoelectronics 17, 362–369 (1998).

    Google Scholar 

  6. W.F. McDonough and S. Sun, Chem. Geol. 120, 223–253 (1995).

    Article  CAS  Google Scholar 

  7. H. Udono, Y. Yamanaka, M. Uchikoshi, and M. Isshiki, J. Phys. Chem. Solids 74, 311–314 (2013).

    Article  CAS  Google Scholar 

  8. J. Zhao, Z. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J. S. Tse, J. Mater. Chem. A 3, 19774–19782 (2015).

    Article  CAS  Google Scholar 

  9. W. Liu, X. Tang, and J. Sharp, J. Phys. D: Appl. Phys. 43, 085406-1-6 (2010).

    Google Scholar 

  10. M. W. Heller and G. C. Danielson, J. Phys. Chem. Solids 23, 601–610 (1962).

    CAS  Google Scholar 

  11. Y. Niwa, Y. Todaka, T. Masuda, T. Kawai, and M. Umemoto, Mater. Trans. 50, 1725–1729 (2009).

    CAS  Google Scholar 

  12. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai and N. Hamada, J. Appl. Phys. 104, 013703-1-8 (2008).

    Google Scholar 

  13. T. Aizawa, R. Song, and A. Yamamoto, Mater. Trans. 46, 1490–1496 (2005).

    CAS  Google Scholar 

  14. R. B. Song, T. Aizawa, and J. Q. Sun, Mater. Sci. Eng. B 136, 111–117 (2006).

    Google Scholar 

  15. T. Serikawa, M. Henmi, and K. Kondoh, J. Vac. Sci. Technol. A 22, 1971–1974 (2004).

    CAS  Google Scholar 

  16. J. Tani and H. Kido, Mater. Res. Soc. Symp. Proc. 1490, 229–234 (2012).

    Google Scholar 

  17. S. Ogawa, A. Katagiri, T. Shimizu, M. Matsushima, K. Akiyama, Y. Kimura, H. Uchida, and H. Funakubo, J. Electro. Mater. 43, 2269–2273 (2014).

    Article  CAS  Google Scholar 

  18. A. Katagiri, S. Ogawa, T. Shimizu, M. Matsushima, K. Akiyama, and H. Funakubo, Mater. Res. Soc. Proc. 1642 (2014). DOI: 10.1557/opl.2014.447-1-6.

  19. K. Akiyama, A. Katagiri, S. Ogawa, M. Matsushima, and H. Funakubo, Phys. Status Solidi C 10 1688–1691 (2013).

    Article  CAS  Google Scholar 

  20. H. Balout, P. Boulet, and M. Record, J. Eelect. Mater. 42, 3458–3466 (2013).

    CAS  Google Scholar 

  21. H. Balout, P. Boulet, and M. Record, Eur. Phys. J. B 88, 209-1-9 (2015).

    Google Scholar 

  22. M. Kurokawa, M. Uehara, D. Ichinose, T. Shimizu, K. Akiyama, M. Matsushima, H. Uchida, Y. Kimura, and H. Funakubo, Jpn. J. Appl. Phys. 56, 05DC02-1-4 (2017).

  23. X. Han and G. Shao, J. Appl. Phys. 112, 013715-1-5 (2012).

  24. Y. Imai, M. Sohma, and T. Suemasu, J. Alloys Comp. 676, 91–95 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurokawa, M., Shimizu, T., Uehara, M. et al. Control of p- and n-type Conduction in Thermoelectric Non-doped Mg2Si Thin Films Prepared by Sputtering Method. MRS Advances 3, 1355–1359 (2018). https://doi.org/10.1557/adv.2018.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.150

Navigation