Skip to main content
Log in

Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We have performed classical molecular dynamics simulations of swift heavy ion damage, typical of fission fragments, in nuclear fuel (UO2) for energy deposition per unit length of 3.9 keV/nm. We did not observe amorphization. The damage mainly consisted of isolated point defects. Only about 1% of the displacements occur on the uranium sublattice. Oxygen Frenkel pairs are an order of magnitude more numerous than uranium Frenkel pairs in the primary damage state. In contrast, previous results show that the ratio of Frenkel pairs on the two sublattices is close to the stoichiometric ratio in ceria. These differences in the primary damage state may lead to differences in radiation response of UO2 and CeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Matzke, in Radiation Effects in Solids, edited by K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga, (Springer Netherlands, Dordrecht, 2007), pp. 401–420.

    Chapter  Google Scholar 

  2. J. Bruno and R.C. Ewing, Elements 2, 343 (2006).

    Article  CAS  Google Scholar 

  3. P.C. Burns, R.C. Ewing, and A. Navrotsky, Science 335, 1184 (2012).

    Article  CAS  Google Scholar 

  4. T. Wiss, J.-P. Hiernaut, D. Roudil, J.-Y. Colle, E. Maugeri, Z. Talip, A. Janssen, V. Rondinella, R.J. Konings, and H.-J. Matzke, J. Nucl. Mater. 451, 198 (2014).

    Article  CAS  Google Scholar 

  5. R.C. Ewing, Nature Materials 14, 252 (2015).

    Article  CAS  Google Scholar 

  6. D. Yun, B. Ye, A. Oaks, W. Chen, M. Kirk, J. Rest, A. Yacout, and J. Stubbins, Nucl. Instrum. and Meth. B 272, 239 (2012).

    Article  CAS  Google Scholar 

  7. R. Devanathan, L. Van Brutzel, A. Chartier, C. Gueneau, A.E. Mattsson, V. Tikare, T. Bartel, T. Besmann, M. Stan, and P. Van Uffelen, Energy Environ. Sci. 3, 1406 (2010).

    Article  CAS  Google Scholar 

  8. L. Van Brutzel, E. Vincent-Aublant, and J.-M. Delaye, Nuclear Instrum. Meth. B 267, 3013 (2009).

    Article  Google Scholar 

  9. I.T. Todorov, W. Smith, K. Trachenko, and M.T. Dove, J. Mater. Chem. 16, 1911 (2006).

    Article  CAS  Google Scholar 

  10. C. Basak, A. Sengupta, and H. Kamath, J. Alloys Compd. 360, 210 (2003).

    Article  CAS  Google Scholar 

  11. T.X.T. Sayle, S.C. Parker, and C.R.A. Catlow, Surface Sci. 316, 329 (1994).

    Article  CAS  Google Scholar 

  12. J. Ziegler, J. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter, (Pergamon Press, New York, 1985) p. 40.

    Google Scholar 

  13. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  14. K. Govers, S. Lemehov, M. Hou, M. Verwerft, J. Nucl. Mater. 366, 161 (2007).

    Article  CAS  Google Scholar 

  15. K. Govers, S. Lemehov, M. Hou, M. Verwerft, J. Nucl. Mater. 376, 66 (2008).

    Article  CAS  Google Scholar 

  16. C.A. Yablinsky, R. Devanathan, J. Pakarinen, J. Gan, D. Severin, C. Trautmann, and T.R. Allen, J. Mater. Res. 30, 1473 (2015).

    Article  CAS  Google Scholar 

  17. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).

    Article  CAS  Google Scholar 

  18. K. Sickafus, L. Minervini, R. Grimes, J. Valdez, M. Ishimaru, F. Li, K. McClellan, and T. Hartmann, Science 289, 748 (2000).

    Article  CAS  Google Scholar 

  19. W. J. Weber, Radiation Effects, 83, 145 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devanathan, R. Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material. MRS Advances 2, 1225–1230 (2017). https://doi.org/10.1557/adv.2017.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.9

Navigation