Skip to main content
Log in

Measurements of VV Precipitation Times and Simulation of the Stability of Catholytes in Vanadium Flow Batteries

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The stability of vanadium flow battery (VFB) catholytes was investigated using both lightscattering measurements and visual observation. V2O5 precipitates after an induction time τ which shows an Arrhenius variation with temperature. The value of τ increases with increasing concentration of sulfate and with decreasing concentration of VV but the activation energy remains constant with a value of (1.791±0.020) eV. Plots of ln τ against [S] and [VV] show good linearity and the slopes give values of βS = 2.073 M-1 and βV5 = –3.434 M-1 for the fractional rates of variation of τ with [S] and [VV], respectively. Combining the Arrhenius Equation with the observed log-linear variation of τ with [S] and [VV] provides a model for simulating the stability of catholytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Yang, et al., Chem. Rev., 111, 3577 (2011) and references therein

    Article  CAS  Google Scholar 

  2. R. M. Darling et al., Energy Environ. Sci., 7, 3459 (2014) and references therein

    Article  CAS  Google Scholar 

  3. M. L. Perry et al., J. Electrochem. Soc., 163, 1, A5064 (2016) and references therein

    Google Scholar 

  4. D. Reed et al., J. Electrochem. Soc., 163, 1, A5211 (2016)

    Article  Google Scholar 

  5. M. Skyllas-Kazacos, et al , J. Electrochem. Soc. 158, R55 (2011)

    Article  CAS  Google Scholar 

  6. M.J. Watt-Smith et al., J. Chem. Technol. Biotechnol. 88, 126 (2013)

    Article  CAS  Google Scholar 

  7. A. M. Pezeshki, et al., J. Electrochem. Soc., 163 (1) A5202 (2016)

    Article  CAS  Google Scholar 

  8. A. Bourke et al., J. Electrochem. Soc. 163, A5097 (2016)

    Article  CAS  Google Scholar 

  9. A. Bourke et al., J. Electrochem. Soc. 162, A1547 (2015)

    Article  CAS  Google Scholar 

  10. M. A. Miller et al., J. Electrochem. Soc. 163, A2095 (2016)

    Article  CAS  Google Scholar 

  11. C. Petchsingh, et al., J. Electrochem. Soc. 163, A5068 (2016)

    Article  CAS  Google Scholar 

  12. D. N. Buckley, et al., J. Electrochem. Soc., 161 A524 (2014)

    Article  CAS  Google Scholar 

  13. S. Roe et al., J. Electrochem. Soc. 163, A5023 (2016) and references therein

    Article  CAS  Google Scholar 

  14. D. Oboroceanu et al., J. Electrochem. Soc. 163, A2919 (2016) and references therein

    Article  CAS  Google Scholar 

  15. L. Li et al. Adv. Energy Mater. 1, 394 (2011) and references therein

    Article  CAS  Google Scholar 

  16. M. Vijayakumar, et al., J. Power Sources 196, 3669 (2011); 241, 173 (2013)

    Article  CAS  Google Scholar 

  17. S. Kim et al., Phys. Chem. Chem. Phys., 13, 18186 (2011)

    Article  CAS  Google Scholar 

  18. J. Zhang et al., J. Appl. Electrochem., 41, 1215 (2011)

    Article  CAS  Google Scholar 

  19. S. Ahmed et al., J. Electrochem. Soc. 154, D103–D112 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oboroceanu, D., Quill, N., Lenihan, C. et al. Measurements of VV Precipitation Times and Simulation of the Stability of Catholytes in Vanadium Flow Batteries. MRS Advances 2, 1177–1182 (2017). https://doi.org/10.1557/adv.2017.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.84

Navigation