Skip to main content
Log in

Rheological Characterization of Alginate Based Hydrogels for Tissue Engineering

MRS Advances Aims and scope Submit manuscript

Abstract

Hydrogels have been widely used in many applications from tissue engineering to drug delivery systems. For both tissue engineering and drug delivery, the mechanical properties are important because they would affect cell-materials interactions and injectability of drugs encapsulated in hydrogel carriers. Therefore, it is important to study the mechanical properties of these hydrogels, particularly at physiological temperature (37°C). This study adopted strain sweep and frequency sweep rotational rheological tests to investigate the rheological characteristics of various tissue engineering relevant hydrogels with different concentrations at 37°C. These hydrogels include alginate, RGD-alginate, and copolymerized collagen/alginate/fibrin. It has revealed that the addition of RGD has negligible effect on the elastic modulus and viscosity of alginate. Alginate gels have demonstrated shear thinning behavior which indicates that they are suitable candidates as carriers for cells or drug delivery. The addition of collagen and fibrin would reinforce the mechanical properties of alginate which makes it a strong scaffold material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. V. Vlierberghe, P. Dubruel and E. Schacht, Biomacromolecules 12(5), 1387 (2011).

    Article  Google Scholar 

  2. K. Y. Lee and D. J. Mooney, Chem. Rev. 101(7), pp. 1869–1880 (2001).

    Article  CAS  Google Scholar 

  3. C. K. Kuo and P. X. Ma, Biomaterials 22(6), 511 (2001).

    Article  CAS  Google Scholar 

  4. A. Martinsen, G. Skjåk-Bræk and O. Smidsrød, Biotechnol. Bioeng. 33(1), 79 (1989).

    Article  CAS  Google Scholar 

  5. G. Klöck, A. Pfeffermann, C. Ryser, P. Gröhn, B. Kuttler, H. J. Hahn and U. Zimmermann, Biomaterials 18(10), 707 (1997).

    Article  Google Scholar 

  6. W. R. Gombotz and S. F. Wee, Adv. Drug Delivery Rev. 64, 194 (2012).

    Article  Google Scholar 

  7. J. A. Rowley, G. Madlambayan and D. J. Mooney, Biomaterials 20(1), 45 (1999).

    Article  CAS  Google Scholar 

  8. P. Fratzl (Ed.), Collagen: Structure and Mechanics, 1st ed (Springer, New York, 2008), p.1–13.

    Book  Google Scholar 

  9. S. J. Stagg, B. E. Pollot, C. R. Rathbone, A. Ong and T. Guda, Interpenetrating Collagen-Fibrin Hydrogels for Skeletal Muscle Regeneration, WWW Document, (http://2015.biomaterials.org/sites/default/files/abstracts/608.pdf), [Accessed 22 04 2016].

  10. J. Chen, J. Irianto, S. Inamdar, P. Pravincumar, D. A. Lee, D. L. Bader and M. M. Knight, Biophys. J. 103(6), 1188 (2012).

    Article  CAS  Google Scholar 

  11. T. Funami, Y. Fang, S. Noda, S. Ishihara, M. Nakauma, K. I. Draget, K. Nishinari and G. O. Phillips, Food Hydrocoll. 23(7), 1746 (2009).

    Article  CAS  Google Scholar 

  12. D. M. Knapp, V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold and R. T. Tranquillo, J. Rheol. 41(5), 971 (1998).

    Article  Google Scholar 

  13. C. B. e. a. da Cunha, Biomaterials 35(32), 8927 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinju Chen.

Additional information

These two authors contribute equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Kandemir, N., Wang, J. et al. Rheological Characterization of Alginate Based Hydrogels for Tissue Engineering. MRS Advances 2, 1309–1314 (2017). https://doi.org/10.1557/adv.2017.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.8

Navigation