Abstract
Lignocellulosic biofuels have been identified as a possible solution to contribute to the world’s demands in energy and environmental sustainability. However, the fundamental understanding of the physical and chemical traits hindering key reactions during biomass to biofuel conversion processes has been limited by the lack of suitable tools and by the large natural variability in such systems. Reaction wood constitutes a good model system to study variations of cellulose content, given the increase in cellulose content in the cell walls of the region under tension in the plant during growth. In this work, we use confocal Raman mapping and Pulsed Force Mode Atomic Force Microscopy (PFM) to explore the effect of variation in cellulose content on the structure and composition of the plant cell wall at the nanoscale. Using statistical analysis on Raman datasets, the characteristic peaks for cellulose and lignin are examined to reveal changes in peak positions across the different scanned regions of the cross section. PFM is used to study local mechanical properties of the different layers of the cell wall. Our approach facilitates the correlation of structure-composition traits of the plant cell wall for a more fundamental understanding of processes involved in biofuel research.
Similar content being viewed by others
References
P. Albersheim, A. Darvill, K. Roberts, R. Sederoff and A. Staehelin, Plant Cell Walls. (Garland Science, NY, 2011).
P. Sannigrahi, A. J. Ragauskas and G. A. Tuskan, Biofuels, Bioproducts and Biorefining 4 (2), 209–226 (2010).
N. Gierlinger, T. Keplinger and M. Harrington, Nat. Protocols 7 (9), 1694–1708 (2012).
N. Gierlinger and M. Schwanninger, Plant Physiology 140 (4), 1246–1254 (2006).
N. Gierlinger and M. Schwanninger, Spectroscopy 21 (2), 69–89 (2007).
U. P. Agarwal, Planta 224 (5), 1141–1153 (2006).
U. P. Agarwal, R. S. Reiner and S. A. Ralph, Cellulose 17 (4), 721–733 (2010).
U. P. Agarwal, R. R. Reiner and S. A. Ralph, Journal of Agricultural and Food Chemistry 61 (1), 103–113 (2013).
N. Gierlinger, S. Luss, C. König, J. Konnerth, M. Eder and P. Fratzl, Journal of Experimental Botany 61 (2), 587–595 (2010).
L. Tetard, A. Passian, R. H. Farahi and T. G. Thundat, Ultramicroscopy, Medium: X; Size: 1–1 (2010).
X. Xi, S. H. Kim and B. Tittmann, Journal of Applied Physics 117 (2), 024703 (2015).
R. K. L. Lau, A. C. M. Kwok, W. K. Chan, T. Y. Zhang and J. T. Y. Wong, Journal of Nanoscience and Nanotechnology 7 (2), 452–457 (2007).
P. Milani, M. Gholamirad, J. Traas, A. Arnéodo, A. Boudaoud, F. Argoul and O. Hamant, The Plant Journal 67 (6), 1116–1123 (2011).
N. L. Biddington, Plant Growth Regulation 4 (2), 103–123 (1986).
S. Jung, M. Foston, M. C. Sullards and A. J. Ragauskas, Energy & Fuels 24 (2), 1347–1357 (2010).
A. Rosa-Zeiser, E. Weilandt, S. Hild and O. Marti, Measurement Science and Technology 8 (11), 1333 (1997).
W. J. Cousins, Wood Science and Technology 10 (1), 9–17 (1976).
S. Iwamoto, W. Kai, A. Isogai and T. Iwata, Biomacromolecules 10 (9), 2571–2576 (2009).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Soliman, M., Tetard, L. Probing Chemical and Physical Properties of Poplar Tension Wood Using Confocal Raman Microscopy and Pulsed Force Mode Atomic Force Microscopy. MRS Advances 2, 1103–1109 (2017). https://doi.org/10.1557/adv.2017.78
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2017.78