Skip to main content

Advertisement

Log in

Probing Chemical and Physical Properties of Poplar Tension Wood Using Confocal Raman Microscopy and Pulsed Force Mode Atomic Force Microscopy

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Lignocellulosic biofuels have been identified as a possible solution to contribute to the world’s demands in energy and environmental sustainability. However, the fundamental understanding of the physical and chemical traits hindering key reactions during biomass to biofuel conversion processes has been limited by the lack of suitable tools and by the large natural variability in such systems. Reaction wood constitutes a good model system to study variations of cellulose content, given the increase in cellulose content in the cell walls of the region under tension in the plant during growth. In this work, we use confocal Raman mapping and Pulsed Force Mode Atomic Force Microscopy (PFM) to explore the effect of variation in cellulose content on the structure and composition of the plant cell wall at the nanoscale. Using statistical analysis on Raman datasets, the characteristic peaks for cellulose and lignin are examined to reveal changes in peak positions across the different scanned regions of the cross section. PFM is used to study local mechanical properties of the different layers of the cell wall. Our approach facilitates the correlation of structure-composition traits of the plant cell wall for a more fundamental understanding of processes involved in biofuel research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Albersheim, A. Darvill, K. Roberts, R. Sederoff and A. Staehelin, Plant Cell Walls. (Garland Science, NY, 2011).

    Google Scholar 

  2. P. Sannigrahi, A. J. Ragauskas and G. A. Tuskan, Biofuels, Bioproducts and Biorefining 4 (2), 209–226 (2010).

    Article  CAS  Google Scholar 

  3. N. Gierlinger, T. Keplinger and M. Harrington, Nat. Protocols 7 (9), 1694–1708 (2012).

    Article  CAS  Google Scholar 

  4. N. Gierlinger and M. Schwanninger, Plant Physiology 140 (4), 1246–1254 (2006).

    Article  CAS  Google Scholar 

  5. N. Gierlinger and M. Schwanninger, Spectroscopy 21 (2), 69–89 (2007).

    Article  CAS  Google Scholar 

  6. U. P. Agarwal, Planta 224 (5), 1141–1153 (2006).

    Article  CAS  Google Scholar 

  7. U. P. Agarwal, R. S. Reiner and S. A. Ralph, Cellulose 17 (4), 721–733 (2010).

    Article  CAS  Google Scholar 

  8. U. P. Agarwal, R. R. Reiner and S. A. Ralph, Journal of Agricultural and Food Chemistry 61 (1), 103–113 (2013).

    Article  CAS  Google Scholar 

  9. N. Gierlinger, S. Luss, C. König, J. Konnerth, M. Eder and P. Fratzl, Journal of Experimental Botany 61 (2), 587–595 (2010).

    Article  CAS  Google Scholar 

  10. L. Tetard, A. Passian, R. H. Farahi and T. G. Thundat, Ultramicroscopy, Medium: X; Size: 1–1 (2010).

  11. X. Xi, S. H. Kim and B. Tittmann, Journal of Applied Physics 117 (2), 024703 (2015).

    Article  Google Scholar 

  12. R. K. L. Lau, A. C. M. Kwok, W. K. Chan, T. Y. Zhang and J. T. Y. Wong, Journal of Nanoscience and Nanotechnology 7 (2), 452–457 (2007).

    Article  CAS  Google Scholar 

  13. P. Milani, M. Gholamirad, J. Traas, A. Arnéodo, A. Boudaoud, F. Argoul and O. Hamant, The Plant Journal 67 (6), 1116–1123 (2011).

    Article  CAS  Google Scholar 

  14. N. L. Biddington, Plant Growth Regulation 4 (2), 103–123 (1986).

    Article  CAS  Google Scholar 

  15. S. Jung, M. Foston, M. C. Sullards and A. J. Ragauskas, Energy & Fuels 24 (2), 1347–1357 (2010).

    Article  CAS  Google Scholar 

  16. A. Rosa-Zeiser, E. Weilandt, S. Hild and O. Marti, Measurement Science and Technology 8 (11), 1333 (1997).

    Article  CAS  Google Scholar 

  17. W. J. Cousins, Wood Science and Technology 10 (1), 9–17 (1976).

    Article  Google Scholar 

  18. S. Iwamoto, W. Kai, A. Isogai and T. Iwata, Biomacromolecules 10 (9), 2571–2576 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, M., Tetard, L. Probing Chemical and Physical Properties of Poplar Tension Wood Using Confocal Raman Microscopy and Pulsed Force Mode Atomic Force Microscopy. MRS Advances 2, 1103–1109 (2017). https://doi.org/10.1557/adv.2017.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.78

Navigation