Skip to main content

Advertisement

Log in

An Investigation of the Energy Levels within a Common Perovskite Solar Cell Device and a Comparison of DC/AC Surface Photovoltage Spectroscopy Kelvin Probe Measurements of Different MAPBI3 Perovskite Solar Cell Device Structures

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We present a study of the energy levels in a FTO/TiO2/CH3NH3PbI3/Spiro solar cell device. The measurements are performed using a novel ambient pressure photoemission (APS) technique alongside Contact Potential Difference data from a Kelvin Probe. The Perovskite Solar Cell energy band diagram is demonstrated for the device in dark conditions and under illumination from a 150W Quartz Tungsten Halogen lamp. This approach provides useful information on the interaction between the different materials in this solar cell device. Additionally, non-destructive macroscopic DC and AC Surface Photovoltage Spectroscopy (SPS) studies are demonstrated of different MAPBI3 device structures to give an indication of overall device performance. AC-SPS measurements, previously used on traditional semiconductors to study the mobility, are used in this case to characterise the ability of a perovskite solar cell device to respond rapidly to chopped light. Two different device structures studied showed very different characteristics: Sample A (without TiO2): (ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM) had ∼4 times the magnitude of AC-SPS response compared to Sample B (including TiO2): (ITO/TiO2/ CH3NH3PbI3/Spiro). This demonstrates that the carrier speed characteristics of device architecture A is superior to device architecture B. The TiO2 layer has been associated with carrier trapping which is illustrated in this example. However, the DC-SPV performance of sample B is ∼5 times greater than that of sample A. The band gap of the MAPBI3 layer was determined through DC-SPS (1.57 ± 0.07 eV), Voc of the devices measured and qualitative observations made of interface trapping by DC light pulsing. The combination of these (APS, KP, AC/DC-SPV/SPS) techniques offers a more general method for measuring the energy level alignments and performance of Organic and Hybrid Solar Cell Devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wang, M. Wright, N. K. Elumalai and A. Uddin, Sol. Energy Mater. Sol. Cells 147, 255– 275 (2016).

    Article  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131 (17), 6050–6051 (2009).

    Article  CAS  Google Scholar 

  3. N. G. Park, Mater. Today 18 (2), 65–72 (2015).

    Article  CAS  Google Scholar 

  4. H. J. Snaith and M. Gratzel, Adv. Mater. 19 (21), 3643–3647 (2007).

    Article  CAS  Google Scholar 

  5. A. K. Chandiran, M. Abdi-Jalebi, M. K. Nazeeruddin and M. Gratzel, ACS Nano 8 (3), 2261– 2268 (2014).

    Article  CAS  Google Scholar 

  6. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, Nat. Photonics 8 (2), 128–132 (2014).

    Article  CAS  Google Scholar 

  7. L. Kronik and Y. Shapira, Surf. Sci. Rep. 37 (1–5), 1–206 (1999).

    Article  CAS  Google Scholar 

  8. L. Barnea-Nehoshtan, S. Kirmayer, E. Edri, G. Hodes and D. Cahen, J. Phys. Chem. Lett. 5 (14), 2408–2413 (2014).

    Article  CAS  Google Scholar 

  9. Y. J. Lee, J. Wang and J. W. P. Hsu, Appl. Phys. Lett. 103 (17), 5 (2013).

    Google Scholar 

  10. J. R. Harwell, T. K. Baikie, I. D. Baikie, J. L. Payne, C. Ni, J. T. S. Irvine, G. A. Turnbull and I. D. W. Samuel, Phys. Chem. Chem. Phys. 18 (29), 19738–19745 (2016).

    Article  CAS  Google Scholar 

  11. I. D. Baikie, A. C. Grain, J. Sutherland and J. Law, Appl. Surf. Sci. 323, 45–53 (2014).

    Article  CAS  Google Scholar 

  12. X. H. Kong, J. E. Rowe and R. J. Nemanich, J. Vac. Sci. Technol. B 26 (4), 1461–1465 (2008).

    Article  CAS  Google Scholar 

  13. S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews and S. Mhaisalkar, J. Mater. Chem. A 2 (24), 9221–9225 (2014).

    Article  CAS  Google Scholar 

  14. D. K. Schroder, Measurement Science and Technology 12 (3), R16 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challinger, S.E., Baikie, I.D., Harwell, J.R. et al. An Investigation of the Energy Levels within a Common Perovskite Solar Cell Device and a Comparison of DC/AC Surface Photovoltage Spectroscopy Kelvin Probe Measurements of Different MAPBI3 Perovskite Solar Cell Device Structures. MRS Advances 2, 1195–1201 (2017). https://doi.org/10.1557/adv.2017.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.72

Navigation