Skip to main content
Log in

Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morphological changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changes in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Ellis, Trends Biochem. Sci. 26, 597 (2001).

    Article  CAS  Google Scholar 

  2. S.B. Zimmerman, and A.P. Minton, Annu. Rev. Biophys. Biomol. Struct. 22, 27 (1993).

    Article  CAS  Google Scholar 

  3. D. Hall, and A.P. Minton, Biochim. Biophys. Acta 1649, 127 (2003).

    Article  CAS  Google Scholar 

  4. H.-X. Zhou, G. Rivas and A.P. Minton, Annu. Rev. Biophys. 37, 375 (2008).

    Article  CAS  Google Scholar 

  5. S. Cayley, and M.T. Record Jr., J. Mol. Recognit. 17, 488 (2004).

    Article  CAS  Google Scholar 

  6. J.A. Dix, and A.S. Verkman, Annu. Rev. Biophys. 37, 247 (2008).

    Article  CAS  Google Scholar 

  7. J.T. Mika, B. Poolman, Curr. Opin. Biotechnol. 22, 117 (2011).

    Article  CAS  Google Scholar 

  8. O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, Nat. Chem. 2, 472 (2010).

    Article  Google Scholar 

  9. Z.A. Schuss, D. Singer, and D. Holcman, Proc. Natl. Acad. Sci. USA 104, 16098 (2007).

    Article  CAS  Google Scholar 

  10. A. Singh, and L.S. Weinberger, Curr. Opin. Microbiol. 12, 460 (2008).

    Article  Google Scholar 

  11. V.A. Parsegian, R.P. Rand and D.C. Rau, Proc. Natl. Acad. Sci. USA 97, 3987 (2000).

    Article  CAS  Google Scholar 

  12. J.B. Boreyko, P. Mruetusatorn, S.T. Retterer, and C.P. Collier, Lab Chip 13, 1295 (2013).

    Article  CAS  Google Scholar 

  13. S. Ma, J. Thiele, X. Liu, Y. Bai, C. Abell and W. T. S. Huck, Small, 8, 2356 (2012).

    Article  CAS  Google Scholar 

  14. J.B. Boreyko, P. Mruetusatorn, S.A. Sarles, S.T. Retterer, and C.P. Collier, J. Am. Chem. Soc. 135, 5545 (2013).

    Article  CAS  Google Scholar 

  15. P. Mruetusatorn, J.B. Boreyko, G. Venkatesan, S.A. Sarles, D. Hayes, and C.P. Collier, Soft Matter 10, 2530 (2014).

    Article  CAS  Google Scholar 

  16. J.D. Fowlkes and C.P. Collier, Lab Chip 13, 877 (2013).

    Article  CAS  Google Scholar 

  17. P.M. Caveney, S.E. Norred, C.W. Chin, J.B. Boreyko, B.S. Razooky, S.T. Retterer, C.P. Collier, and M.L. Simpson, ACS Synth. Biol. 6, 334 (2016).

    Article  Google Scholar 

  18. L. So, A. Ghosh, C. Zong, L.A. Sepúlveda, R. Sergev, and I. Golding, Nat. Genet. 43, 554 (2011).

    Article  CAS  Google Scholar 

  19. R.D. Dar, B.S. Razooky, L.S. Weinberger, C.D. Cox, and M.L. Simpson, PLoS One 10, e0140969 (2015).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boreyko, J., Caveney, P., Norred, S.L. et al. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale. MRS Advances 2, 2427–2433 (2017). https://doi.org/10.1557/adv.2017.489

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.489

Navigation