Skip to main content

Advertisement

Log in

Facile and Scalable Synthesis of Copolymer-Sulfur Composites as Cathodes for High Performance Lithium-Sulfur Batteries

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

To promote the energy density of lithium-ion battery, the sulfur-based cathode has attracted extensive attention because of its high specific capacity of 1672 mAh g-1 and its high abundance. However, the sulfur shuttling effects and the loss of active material during lithiation hinder its commercial application. To tackle these issues, we synthesized a stable copolymer-sulfur composite by chemically binding sulfur. The composite with 86% sulfur content was prepared using 1,3-diethynylbenzen and sulfur particles via scalable invers vulcanization. The sulfur content in copolymer sulfur was achieved as high as 86%. Our copolymer-sulfur composite cathode showed excellent cycling performance with a specific capacity of 454 mAh g-1 at 0.1 C after 300 cycles. We demonstrate that the organosulfur-DEB units in the copolymer-sulfur composite serve as the ‘plasticizer’ to effectively prevent the polysulfide shuttling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan and C. S. Ozkan, Sci. Rep.7, 44838 (2017).

    Article  CAS  Google Scholar 

  2. C. Liu, C. Li, K. Ahmed, W. Wang, I. Lee, F. Zaera, C. S. Ozkan and M. Ozkan, RSC Adv.6 (85), 81712–81718 (2016).

    Article  CAS  Google Scholar 

  3. C. Li, C. Liu, W. Wang, J. Bell, Z. Mutlu, K. Ahmed, R. Ye, M. Ozkan and C. S. Ozkan, Chem. Commun.52 (76), 11398–11401 (2016).

    Article  CAS  Google Scholar 

  4. C. Li, C. Liu, W. Wang, Z. Mutlu, J. Bell, K. Ahmed, R. Ye, M. Ozkan and C. S. Ozkan, Sci. Rep.7 (1), 917 (2017).

    Article  CAS  Google Scholar 

  5. C. Liu, C. Li, W. Wang, M. Ozkan and C. S. Ozkan, Ener. Tech.5 (3), 422–427 (2017).

    CAS  Google Scholar 

  6. C. Liu, C. Li, K. Ahmed, Z. Mutlu, C. S. Ozkan and M. Ozkan, Sci. Rep.6, 29183 (2016).

    Article  CAS  Google Scholar 

  7. C. Liu, C. Li, K. Ahmed, W. Wang, I. Lee, F. Zaera, C. S. Ozkan and M. Ozkan, Adv. Mater. Interf.3 (6), 1500503 (2016).

    Google Scholar 

  8. J. W. Fergus, J. Power Sources195 (4), 939–954 (2010).

    CAS  Google Scholar 

  9. Y. Yang, G. Zheng and Y. Cui, Chem. Soc. Rev.42 (7), 3018–3032 (2013).

    CAS  Google Scholar 

  10. C. Liang, N. J. Dudney and J. Y. Howe, Chem. of Mater.21 (19), 4724–4730 (2009).

    CAS  Google Scholar 

  11. G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh and Y. Cui, Nano lett.13 (3), 1265–1270 (2013).

    CAS  Google Scholar 

  12. S. Evers and L. F. Nazar, Chem. Commun.48 (9), 1233–1235 (2012).

    CAS  Google Scholar 

  13. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui and H. Dai, Nano lett.11 (7), 2644–2647 (2011).

    CAS  Google Scholar 

  14. J.-Z. Wang, L. Lu, M. Choucair, J. A. Stride, X. Xu and H.-K. Liu, J. Power Sources196 (16), 7030–7034 (2011).

    CAS  Google Scholar 

  15. W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu and Y. Cui, Proc. Acad. Sci.U. S. A.110 (18), 7148–7153 (2013).

    CAS  Google Scholar 

  16. W. Zhou, X. Xiao, M. Cai and L. Yang, Nano lett.14 (9), 5250–5256 (2014).

    CAS  Google Scholar 

  17. W. J. Chung, J. J. Griebel, E. T. Kim, H. Yoon, A. G. Simmonds, H. J. Ji, P. T. Dirlam, R. S. Glass, J. J. Wie, N. A. Nguyen, B. W. Guralnick, J. Park, SomogyiÁrpád, P. Theato, M. E. Mackay, Y.-E. Sung, K. Char and J. Pyun, Nat. Chem.5 (6), 518–524 (2013).

    CAS  Google Scholar 

  18. A. G. Simmonds, J. J. Griebel, J. Park, K. R. Kim, W. J. Chung, V. P. Oleshko, J. Kim, E. T. Kim, R. S. Glass, C. L. Soles, Y.-E. Sung, K. Char and J. Pyun, ACS Macro Lett.3 (3), 229–232 (2014).

    CAS  Google Scholar 

  19. J. J. Griebel, G. Li, R. S. Glass, K. Char and J. Pyun, J. Polym. Sci. A: Polym. Chem.53 (2), 173–177 (2015).

    CAS  Google Scholar 

  20. P. T. Dirlam, A. G. Simmonds, T. S. Kleine, N. A. Nguyen, L. E. Anderson, A. O. Klever, A. Florian, P. J. Costanzo, P. Theato, M. E. Mackay, R. S. Glass, K. Char and J. Pyun, RSC Adv.5 (31), 24718–24722 (2015).

    CAS  Google Scholar 

  21. S. N. Talapaneni, T. H. Hwang, S. H. Je, O. Buyukcakir, J. W. Choi and A. Coskun, Angew. Chem.55 (9), 3106–3111 (2016).

    CAS  Google Scholar 

  22. Z. Sun, M. Xiao, S. Wang, D. Han, S. Song, G. Chen and Y. Meng, J. Mater. Chem. A2 (24), 9280 (2014).

    CAS  Google Scholar 

  23. NIST X-ray Photoelectron Spectroscopy Database (NIST Standard Reference Database 20, Version 4.1). Available at https://srdata.nist.gov/xps/Default.aspx (accessed at April 2017)

  24. G. Zhou, inDesign, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries: Next-Generation High Performance Lithium–Sulfur Batteries (Springer Singapore, Singapore, 2017), pp. 57–74

  25. Y. Fu and A. Manthiram, RSC Adv.2 (14), 5927 (2012).

    CAS  Google Scholar 

  26. Y. Li, Z. Li, Q. Zhang and P. K. Shen, J. Mater. Chem. A2 (13), 4528 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Campbell, B., Ye, R. et al. Facile and Scalable Synthesis of Copolymer-Sulfur Composites as Cathodes for High Performance Lithium-Sulfur Batteries. MRS Advances 2, 3271–3276 (2017). https://doi.org/10.1557/adv.2017.444

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.444

Navigation