Skip to main content
Log in

Predicting Ga and Cu Profiles in Co-Evaporated Cu(In,Ga)Se2 Using Modified Diffusion Equations and a Spreadsheet

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Cu(In,Ga)Se2 (CIGS) photovoltaic absorbers frequently develop Ga gradients during growth. These gradients vary as a function of growth recipe, and are important to device performance. Prediction of Ga profiles using classic diffusion equations is not possible because In and Ga atoms occupy the same lattice sites and thus diffuse interdependently, and there is not yet a detailed experimental knowledge of the chemical potential as a function of composition that describes this interaction. We show how diffusion equations can be modified to account for site sharing between In and Ga atoms. The analysis has been implemented in an Excel spreadsheet, and outputs predicted Cu, In, and Ga profiles for entered deposition recipes. A single set of diffusion coefficients and activation energies are chosen, such that simulated elemental profiles track with published data and those from this study. Extent and limits of agreement between elemental profiles predicted from the growth recipes and the spreadsheet tool are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.L. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi,Prog. Photovoltaics 16, 235, (2008)

  2. S. Sridhar,Metall. Mater. Trans. A 41A, 543, (2010)

  3. M. Ider, “Thermochemistry and Phase Diagram Studies in the Cu-In-Ga-Se System,” Ph.D. thesis, University of Florida, (2003)

  4. H.P. Hermansson,Statens Karnkraftinspektion 95, 29, (1995)

  5. C. Dagan, T. F. Ciszek, and D. Cahen,J. Phys. Chem.-US 96,11009, (1992)

  6. K. Djessas, S. Yapi, G. Massé, M. Ibannain, and J. L. Gauffier,J. Appl. Phys.95, 4111, (2004.)

  7. O. Lundberg, J. Lua, A. Rockett, M. Edoff, and L. Stolt,J. Phys. Chem. Solids 64, 1499, (2003)

  8. M. Marudachalam, R.W. Birkmire, H. Hichri, J.M. Schultz, A. Swartzlander, and M.M. Al-Jassim,J. Appl. Phys. 82, 2896, (1997)

  9. B. Namnuan, K. Yoodee, and S. Chatraphorn,J. Cryst. Growth 432, 24, (2015)

  10. H. Rodriguez-Alvarez, R.Mainz, R. Caballero, D.Abou-Ras, M.Klaus, S.Gledhill, A. Weber, C.A. Kaufmann, and H.W. Schock,Sol. Energ. Mat. Sol. C.116, 102, (2013).

    CAS  Google Scholar 

  11. H. Rodriguez-Alvarez, R. Mainz, and S. Sadewasser,J. Appl. Phys.115, 204913, (2014).

    Google Scholar 

  12. S.M. Schleussner, T. Törndahl, M. Linnarsson, U. Zimmermann, Timo Wätjen, and M. Edoff,Prog. Photovoltaics 20, 284, (2012)

  13. D.J. Schroeder, G.D. Berry, and A.A. Rockett ,Appl. Phys. Lett.69, 4068, (1996).

    CAS  Google Scholar 

  14. U. Tinter, and H.D. Wiemhofer,Solid State lonics 9 & 10, 1213, (1983)

  15. P. Szaniawski, P. Salome, V. Fjallstrom, T. Torndahl, U. Zimmermann, and M. Edoff,IEEE Journ. Photovoltaics,5, 1775, (2015)

  16. J. S. Park, Z. Dong, S. Kim, and J. H. Perepezko,J. Appl. Phys.87, 3683, (2000).

    CAS  Google Scholar 

  17. R. Caballero, V. Izquierdo-Roca, X. Fontane, C.A. Kaufmann, J. Alvarez-Garcıa, A. Eicke, L. Calvo-Barrio, A. Perez-Rodrıguez, H.W. Schock, and J.R. Morante,Acta Mater.58, 3468, (2010).

    CAS  Google Scholar 

  18. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, and A.N. Tiwari,Nat. Mater.10, 857, (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repins, I.L., Harvey, S., Bowers, K. et al. Predicting Ga and Cu Profiles in Co-Evaporated Cu(In,Ga)Se2 Using Modified Diffusion Equations and a Spreadsheet. MRS Advances 2, 3169–3174 (2017). https://doi.org/10.1557/adv.2017.350

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.350

Navigation