Skip to main content
Log in

Advanced anode materials for sodium ion batteries: carbodiimides

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

TMNCN (where TM = Mn2+, Fe2+, Co2+ or Ni2+) have been recently proposed as electrochemically active materials for Na-ion insertion that operate via conversion reaction. Their electrochemical performance for Na-ion batteries is presented here with an emphasis on long-term cycling. With a very low voltage for Na insertion of ∼0.1V vs Na+/Na for MnNCN, the overpotential observed in batteries of MnNCN plays a very important role in their performance, evidencing big differences in the electrochemical performance between materials produced with different nano- and micrometer particle sizes evidenced by SEM images. A more suitable voltage for the conversion reaction accompanied by less overpotential is shown by FeNCN, CoNCN and NiNCN. Despite the lower reversible capacity achieved by FeNCN (450 mAh/g) in comparison with CoNCN and NiNCN in the first cycle; the smallest first-cycle irreversible capacity (220 mAh/g) and the lower voltage plateau (0.3 V vs Na+/Na) make FeNCN a good candidate as an anode material for sodium ion batteries. The voltages of conversion reaction are correlated with the calculated enthalpies of formation suggesting that thermodynamics dominates the observed electrochemical conversion reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Tarascon and M. Armand “Issues and challenges facing rechargable lithium batteries” Nature, 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  2. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez and T. Rojo “Na-ion batteries, recent advances and present challenges to become low cost energy storage systems.” Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  CAS  Google Scholar 

  3. V. Palomares, M. Casas-Cabanas, E. Castillo-Martínez, M. H. Han and T. Rojo, “Update on Na-based battery materials. A growing research path”, Energy Environ. Sci., 2013, 6, 2312– 2337.

    Article  CAS  Google Scholar 

  4. Y. Kim, Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh and K. T. Lee, “An Amorphous Red Phosphorus/ Carbon Composite as a Promising Anode Material for Sodium Ion Batteries.” Adv. Mater. 2013, 25, 3045–3049.

    Article  CAS  Google Scholar 

  5. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze, “Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell.” Electrochem.Commun. 2012, 21, 65–68.

    Article  CAS  Google Scholar 

  6. P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon and R. Palacin, “Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries” Chemistry of Materials, 2011, 23, 4109–4111.

    Article  CAS  Google Scholar 

  7. Zhao J., Zhao L., Chihara K., Okada S., Yamaki J.i., Matsumoto S., Kuze S. and Nakane K., “Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries” J. Power Sources, 2013, 244, 752–757.

    Article  CAS  Google Scholar 

  8. L. Zhao, J. M. Zhao, Y. -S. Hu, H. Li, Z. B. Zhou, M. Armand and L. Q. Chen, “Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery” Adv. Energy Mater., 2012, 2, 962–965.

    Article  CAS  Google Scholar 

  9. E. Castillo-Martinez, J. Carretero-Gonzalez and M. Armand; “Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries” Angew. Chem. Int. Ed. 2014, 54, 5445–5449.

    Article  Google Scholar 

  10. Y. Lu, L. Wang, J. Cheng and J.B. Goodenough; “Prussian blue: a new framework of electrodematerials for sodium batteries” Chem. Commun., 2012, 48, 6544–6546.

    Article  CAS  Google Scholar 

  11. A. Eguía-Barrio, E. Castillo-Martínez, X. Liu, R. Dronskowski, M. Armand and T. Rojo; “Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries” J. Mater. Chem. A 2016, 4, 1608–1611.

    Article  Google Scholar 

  12. T. D. Boyko, R. J. Green, R. Dronskowski and A. Moewes; “Electronic Band Gap Reduction in Manganese Carbodiimide: MnNCN”; J. Phys. Chem. C 2013, 117, 12754.

    Article  CAS  Google Scholar 

  13. X. Liu, M. Krott, P. Müller, C. Hu, H. Lueken and R. Dronskowski; “Synthesis, Crystal Structure, and Properties of MnNCN, the First Carbodiimide of a Magnetic Transition Metal”; Inorg. Chem.; 2005, 44 (9), 3001.

    Article  CAS  Google Scholar 

  14. M. T. Sougrati, A. Darwiche, X. Liu, A. Mahmoud, R. P. Hermann, S. Jouen, L. Monconduit, R. Dronskowski and L. Stievano; “Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties” Angew. Chem. Int. Ed. 2016, 55, 5090–5095.

    Article  CAS  Google Scholar 

  15. X. Liu, L. Stork, M. Speldrich, H. Lueken and R. Dronskowski; “FeNCN and Fe(NCNH)2: Synthesis, Structure, and Magnetic Properties of a Nitrogen-Based Pseudo-oxide and -hydroxide of Divalent Iron”; Chem. Eur. J. 2009, 15, 1558.

    Article  CAS  Google Scholar 

  16. M. Krott, X. Liu, B. P. T. Fokwa, M. Speldrich, H. Lueken and R. Dronskowski; “Synthesis, Crystal-Structure Determination and Magnetic Properties of Two New Transition-Metal Carbodiimides:  CoNCN and NiNCN”; Inorg. Chem. 2007, 46, 2204.

    Article  CAS  Google Scholar 

  17. M. Krott, A. Houben, P. Müller, W. Schweika and R. Dronskowski; “Determination of the magnetic structure of manganese carbodiimide with diffraction experiments using polarized neutrons “; Phys. Rev. B; 2009, 80, 024117.

    Article  Google Scholar 

  18. L. H. Ahrens; “The use of ionization potentials Part 1. Ionic radii of the elements”; Geochim. Cosmochim. Acta, 1952, 2 (3), 155.

    Article  CAS  Google Scholar 

  19. B. Milke, C. Wall, S. Metzke, G. Clavel, M. Fichtner and C. Giordano; “A simple synthesis of MnN0.43@C nanocomposite: characterization and application as battery material”; J. Nanopart. Res. 2014, 16, 2795.

    Article  Google Scholar 

  20. J. Cui, C. Qing, Q. Zhang, C. Su, X. Wang, B. Yang and X. Huang; “Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites” Ionics 2014, 20, 23.

    Article  CAS  Google Scholar 

  21. B. Jache and P. Adelhelm, “Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena”; Angew. Chem. Int. Ed., 2014, 53 (38), 10169.

    Article  CAS  Google Scholar 

  22. B. Jache, J. O. Binder, T. Abe and P. Adelhelm; “A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries”; Phys. Chem. Chem. Phys, 2016, 18, 14299.

    Article  CAS  Google Scholar 

  23. M. Launay and R. Dronskowski, “A Theoretical Study on the Existence and Structures of Some Hypothetical First-Row Transition-Metal M(NCN) compounds” Z. Naturforsch. 2005, 60b, 437.

    Article  Google Scholar 

  24. R. Blachnik: Elemente, anorganische Verbindungen und Materialen, Minerale; J. D’Ans, E. Lax: Taschenbuch für Chemiker und Physiker; Springer-Verlag, Berlin, Heidelberg, New York (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth Castillo-Martinez or Teofilo Rojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguia-Barrio, A., Castillo-Martinez, E., Liu, X. et al. Advanced anode materials for sodium ion batteries: carbodiimides. MRS Advances 2, 1165–1176 (2017). https://doi.org/10.1557/adv.2017.267

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.267

Navigation