Skip to main content
Log in

Self-Organized Lead(II) Sulfide Quantum Dots Superlattice

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100ºC resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 7315–7322. doi:10.1063/1.453325.

    Article  CAS  Google Scholar 

  2. J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B. 48 (1993) 2819–2822. doi:10.1103/PhysRevB.48.2819.

    Article  CAS  Google Scholar 

  3. A.P. Litvin, P.S. Parfenov, E. V. Ushakova, A. V. Fedorov, M. V. Artemyev, A. V. Prudnikau, V. V. Golubkov, A. V. Baranov, PbS Quantum Dots in a Porous Matrix: Optical Characterization, J. Phys. Chem. C. 117 (2013) 12318–12324. doi:10.1021/jp402287b.

    Article  CAS  Google Scholar 

  4. M. Corricelli, D. Altamura, L. De Caro, A. Guagliardi, A. Falqui, A. Genovese, A. Agostiano, C. Giannini, M. Striccoli, M.L. Curri, Self-organization of mono- and bi-modal PbS nanocrystal populations in superlattices, CrystEngComm. 13 (2011) 3988. doi:10.1039/c0ce00874e.

    Article  CAS  Google Scholar 

  5. X. Liu, M. Zhang, Studies on PbS and PbSe detectors for IR system, Int. J. Infrared Millimeter Waves. 21 (2000) 1697–1701. doi:10.1023/A:1006676029014.

    Article  Google Scholar 

  6. M. Cheragizade, R. Yousefi, F. Jamali-Sheini, M.R. Mahmoudian, A. Sáaedi, N. Ming Huang, Synthesis and characterization of PbS mesostructures as an IR detector grown by hydrogen-assisted thermal evaporation, Mater. Sci. Semicond. Process. 26 (2014) 704–709. doi:10.1016/j.mssp.2014.08.026.

    Article  CAS  Google Scholar 

  7. M. Yuan, M. Liu, E.H. Sargent, Colloidal quantum dot solids for solution-processed solar cells, Nat. Energy. 1 (2016) 16016. doi:10.1038/nenergy.2016.16.

    Article  CAS  Google Scholar 

  8. R.W. Crisp, D.M. Kroupa, A.R. Marshall, E.M. Miller, J. Zhang, M.C. Beard, J.M. Luther, Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells., Sci. Rep. 5 (2015) 9945. doi:10.1038/srep09945.

    Article  CAS  Google Scholar 

  9. A.S. Obaid, M.A. Mahdi, Z. Hassan, M. Bououdina, PbS nanocrystal solar cells fabricated using microwave-assisted chemical bath deposition, Int. J. Hydrogen Energy. 38 (2013) 807–815. doi:10.1016/j.ijhydene.2012.10.046.

    Article  CAS  Google Scholar 

  10. A. V. Baranov, E. V. Ushakova, V. V. Golubkov, A.P. Litvin, P.S. Parfenov, A. V. Fedorov, K. Berwick, Self-organization of colloidal PBS quantum dots into highly ordered superlattices, Langmuir. 31 (2015) 506–513. doi:10.1021/la503913z.

    Article  CAS  Google Scholar 

  11. D. Altamura, M. Corricelli, L. De Caro, A. Guagliardi, A. Falqui, A. Genovese, A.Y. Nikulin, M.L. Curri, M. Striccoli, C. Giannini, Structural investigation of three-dimensional self-assembled PbS binary superlattices, Cryst. Growth Des. 10 (2010) 3770–3774. doi:10.1021/cg100601a.

    Article  CAS  Google Scholar 

  12. M.A. Hines, G.D. Scholes, Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution, Adv. Mater. 15 (2003) 1844–1849. doi:10.1002/adma.200305395.

    Article  CAS  Google Scholar 

  13. C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 30 (2000) 545–610. doi:10.1146/annurev.matsci.30.1.545.

    Article  CAS  Google Scholar 

  14. S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Structural and optical properties of PbS thin films deposited by chemical bath deposition, Mater. Chem. Phys. 97 (2006) 71–80. doi:10.1016/j.matchemphys.2005.07.061.

    Article  CAS  Google Scholar 

  15. F. Göde, E. Güneri, F.M. Emen, V. Emir Kafadar, S. Ünlü, Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS thin films, J. Lumin. 147 (2014) 41–48. doi:10.1016/j.jlumin.2013.10.050.

    Article  Google Scholar 

  16. D. Segets, J.M. Lucas, R.N. Klupp Taylor, M. Scheele, H. Zheng, A.P. Alivisatos, W. Peukert, Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements, ACS Nano. 6 (2012) 9021–9032. doi:10.1021/nn303130d.

    Article  CAS  Google Scholar 

  17. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, Z. Hens, Size-Dependent Optical Properties of Colloidal PbS Quantum Dots, ACS Nano. 3 (2009) 3023–3030. doi:10.1021/nn900863a.

    Article  CAS  Google Scholar 

  18. S.W. Clark, J.M. Harbold, F.W. Wise, Resonant Energy Transfer in PbS Quantum Dots, J. Phys. Chem. C. 111 (2007) 7302–7305. doi:10.1021/jp0713561.

    Article  CAS  Google Scholar 

  19. J.J. Peterson, T.D. Krauss, Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots, Nano Lett. 6 (2006) 510–514. doi:10.1021/nl0525756.

    Article  CAS  Google Scholar 

  20. L. Manna, E.C. Scher, L.-S. Li, A.P. Alivisatos, Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods, J. Am. Chem. Soc. 124 (2002) 7136–7145. doi:10.1021/ja025946i.

    Article  CAS  Google Scholar 

  21. C. Hammond, The Basics of Crystallography and Diffraction, Third ed., Oxford University Press, Oxford, 2009.

    Google Scholar 

  22. S.M. Antao, Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups, Am. Mineral. 97 (2012) 661–665. doi:10.2138/am.2012.3905.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Filho, J.M.C., Ermakov, V.A., Bonato, L.G. et al. Self-Organized Lead(II) Sulfide Quantum Dots Superlattice. MRS Advances 2, 841–846 (2017). https://doi.org/10.1557/adv.2017.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.246

Navigation