Skip to main content
Log in

Plant Growth Enhancement of Seeds Immersed in Plasma Activated Water

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We have produced plasma activated water (PAW) using air, O2, N2, He and Ar atmospheric pressure dielectric barrier discharge plasma irradiation to deionized water. Then, PAW was kept for 1 hour or 1 day at room temperature to reduce concentrations of short lifetime reactive oxygen species and reactive nitrogen species before supplying to plants. O2, air and N2 PAW induces growth enhancement of plants. For 1 hour PAW supply the longest seedling length after 3 days cultivation is 1.62, 1.38, 1.13, 1.12, and 1.04 times long for air, O2, He, N2, and Ar plasmas compared with the length for thecontrol, whereas for 1 day PAW supply it is 1.52, 1.28, 1.13, 1.10, and 1.08 times long for air, O2, He, N2 and Ar. Therefore, long lifetime reactive oxygen nitrogen species in PAW is effective for the growth enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Xu, D. Liu, B. Wang, C. Chen, Z. Chen, D. Li, Y. Yang, H. Chen, and M. G. Kong, PLOS ONE 10, e0128205 (2015).

    Article  Google Scholar 

  2. T. von Woedtke, S. Reuter, K. Masur, and K. D. Weltmann, Phys. Rep. 530, 291 (2013).

    Article  Google Scholar 

  3. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).

    Article  Google Scholar 

  4. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes Polym. 5, 503 (2008).

    Article  CAS  Google Scholar 

  5. F. Utsumi, H. F. Utsumi, H. Kajiyama, K. Nakamura, H. Tanaka, M. Mizuno, K. Ishikawa, H. Kondo, H. Kano, M. Hori, and F. Kikkawa, PLOS ONE 8, e81576 (2013).

    Article  Google Scholar 

  6. S. Mohades, M. Laroussi, J. Sears, N. Barekzi, and H. Razavi, Phys. Plasmas 22, 122001 (2015).

    Article  Google Scholar 

  7. S. Rupf, A. Lehmann, M. Hannig, B. Schafer, A. Schubert, U. Feldmann, and A. Schindler, J. Med. Microbiol. 59, 206 (2010).

    Article  Google Scholar 

  8. H. Yamazaki, T. Ohshima, Y. Tsubota, H. Yamaguchi, J. A. Jayawardena, and Y. Nishimura, Dent. Mater. J. 30, 384 (2011).

    Article  Google Scholar 

  9. X. T. Deng, J. J. Shi, H. L. Chen, and M. G. Kong, Appl. Phys. Lett. 90, 013903 (2007).

    Article  Google Scholar 

  10. A. V. Nastuta, I. Topala, C. Grigoras, V. Pohoata, and G. Popa, J. Phys. D 44, 105204 (2011).

    Article  Google Scholar 

  11. G. Collet, E. Robert, A. Lenoir, M. Vandamme, T. Darny, S. Dozias, C. Kieda, and J. M. Pouvesle, Plasma Sources Sci. Technol. 23, 012005 (2014).

    Article  Google Scholar 

  12. M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J. M. Pouvesle, and A. L. Pape, Int. J. Cancer 130, 2185 (2012).

    Article  CAS  Google Scholar 

  13. J. M. Plewa, M. Yousfi, C. Frongia, O. Eichwald, B. Ducommun, N. Merbahi, and V. Lobjois, New J. Phys. 16, 043027 (2014).

  14. S. A. Norberg, W. Tian, E. Johnsen, and M. J. Kushner, J. Phys. D 47, 475203 (2014).

    Article  Google Scholar 

  15. S. H. Hong, E. J. Szili, A. T. A. Jenkins, and R. D. Short, J. Phys. D 47, 362001 (2014).

    Article  Google Scholar 

  16. D. Dobrynin, A. Fridman, and A. Y. Starikovskiy, IEEE Trans. Plasma Sci. 40, 2163 (2012).

    Article  CAS  Google Scholar 

  17. A.J. Mcmichael, J.W. Powles, C.D. Butler, R. Uauy, Lancet 370, 1253 (2007).

    Article  Google Scholar 

  18. E.C. Oerke, H.W. Dehne, F. Schonbeck, A. Weber, Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops, Elsevier, Amsterdam, 1981.

    Google Scholar 

  19. J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327, 812 (2010).

    Article  CAS  Google Scholar 

  20. P.R. Ehrlich, A.H. Ehrlich, G.C. Daily, Review 19, 1 (1993).

    Google Scholar 

  21. V.W. Ruttan, J. Econ. Perspect. 16, 161 (2002).

    Google Scholar 

  22. G. Uchida, A. Nakajima, K. Takenaka, K. Koga, M. Shiratani, and Y. Setsuhara, IEEE Transactions on Plasma Science 43, 4081 (2015).

    Article  CAS  Google Scholar 

  23. P. Attri, T. Sarinont, M. Kim, T. Amano, K. Koga, A. E. Cho, E. H. Choi, and M. Shiratani, Sci. Rep. 5, 17781 (2015).

    Article  CAS  Google Scholar 

  24. J. H. Park, M. Kim, M. Shiratani, A. E. Cho, E. H. Choi, and P. Attri, Sci. Rep. 6, (2016).

  25. P. Attri, M. Yusupov, J. H. Park, L. P. Lingamdinne, J. R. Koduru, M. Shiratani, E. H. Choi, A. Bogaerts, Sci. Rep. 6, 34419 (2016).

    Article  CAS  Google Scholar 

  26. T. Kawasaki, K. Kawano, H. Mizoguchi, Y. Yano, K. Yamashita, M. Sakai, T. Shimizu, G. Uchida, K. Koga, and M. Shiratani, IEEE Trans. Plasma Sci. 42, 2482 (2014).

    Article  CAS  Google Scholar 

  27. T. Kawasaki, S. Kusumegi, A. Kudo, T. Sakanoshita, T. Tsurumaru, A. Sato, G. Uchida, K. Koga, and M. Shiratani, J. Appl. Phys. 119, 173301 (2016).

    Article  Google Scholar 

  28. T. Kawasaki, A. Sato, S. Kusumegi, A. Kudo, T. Sakanoshita, T. Tsurumaru, G. Uchida, K. Koga, and M. Shiratani, Appl. Phys. Exp. 9, 076202 (2016).

    Article  Google Scholar 

  29. S. Kitazaki, D. Yamashita, H. Matsuzaki, G. Uchida, K. Koga, M. Shiratani, and N. Hayashi, TENCON 2010 - 2010 IEEE Region 10 Conference 1960 (2010).

  30. S. Kitazaki, K. Koga, M. Shiratani, and N. Hayashi, Jpn. J. Appl. Phys. 51, 01AE01 (2012).

  31. S. Kitazaki, K. Koga, M. Shiratani, and N. Hayashi, MRS Proc. 1469, mrss12-1469-ww02-08 (2012).

  32. S. Kitazaki, T. Sarinont, K. Koga, N. Hayashi, and M. Shiratani, Curr. Appl. Phys. 14, S149 (2014).

    Article  Google Scholar 

  33. N. Hayashi, R. Ono, M. Shiratani, and A. Yonesu, Jpn. J. Appl. Phys. 54, 06GD01 (2015).

  34. K. Koga, S. Thapanut, T. Amano, H. Seo, N. Itagaki, N. Hayashi, and M. Shiratani, Appl. Phys. Exp. 9, 016201 (2016).

    Article  Google Scholar 

  35. T. Sarinont, T. Amano, P. Attri, K. Koga, N. Hayashi, and M. Shiratani, Arch. Biochem. Biophys. 605, 129 (2016).

    Article  CAS  Google Scholar 

  36. S. Watanabe, R. Ono, N. Hayashi, M. Shiratani, K. Tashiro, S. Kuhara, A. Inoue, K. Yasuda, and H. Hagiwara, Jpn. J. of Appl. Phys. 55, 07LG10 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thapanut Sarinont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarinont, T., Katayama, R., Wada, Y. et al. Plant Growth Enhancement of Seeds Immersed in Plasma Activated Water. MRS Advances 2, 995–1000 (2017). https://doi.org/10.1557/adv.2017.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.178

Navigation