Skip to main content
Log in

Photocurrent Enhancement by Introducing Gold Nanoparticles in Nanostructures Based Heterojunction Solar Cell Device

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this paper, we report a first hand study of plasmon-enhanced photocurrent observed in hybrid nanostructures based heterojunction solar cell. The heterojunction solar cell was fabricated, using chemically synthesized narrow gap, IV–VI group semiconductor nanoparticles (PbS) of 3~6nm diameter, wide gap semiconductor ZnO nanowires of 500nm~1 μm length and ~50nm diameter, and gold nanoparticles (~5nm to 30nm), by spin-coating (~20cycles) onto FTO glasses, in ambient conditions (25°C, 1atm). The synthesized nanostructures were characterized by XRD, UV-VIS absorption, SEM, TEM, solar simulator, etc. Nanostructures of variant sizes were integrated in to the heterojunction devices to study the effects on photocurrent and solar cell performance. The sizes, lengths, thickness of nanostructures were optimized to have best solar cell devices. The effects of fabrication conditions (such as growth temperature, growth time, anneal temperature, ligand treatments, in air or in N2, etc.) on device performance were also studied. The architecture of film stack, i.e., the positions of Au nanoparticles and PbS nanoparticles were also studied. It was confirmed that introducing Au nanopartiles with proper size would lead to the increase of photocurrent. The key challenges were to minimize the trap states and optimize the interface of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 115 (19), 8706–8715, 1993.

    Article  CAS  Google Scholar 

  2. AJ Nozik, Physica E: Low-dimensional Systems and Nanostructures, 14 (1), 115–120, 2002.

    Article  CAS  Google Scholar 

  3. M. A. Hines and G. D. Scholes, Adv. Mater.15, 1844–1849, 2003.

    Article  CAS  Google Scholar 

  4. J. Tang, X. Wang, and E. Sargent, Adv. Mater. 22, 1398–1402, 2010.

    Article  CAS  Google Scholar 

  5. M. R. Kim, D. Ma, J. of Phys. Chem. Lett., 6, 85–99, 2015.

    Article  CAS  Google Scholar 

  6. J. Kramer and E. H. Sargent, Chem. Rev. 114, 863–882, 2014.

    Article  CAS  Google Scholar 

  7. R. Debnath, O. Bakrbc and E. H. Sargent, Energy Environ. Sci., 4, 4870, 2011.

    Article  CAS  Google Scholar 

  8. B. A. Gonfa, M. R. Kim, N. Delegan, A. C. Tavares, R. Izquierdo, N. Wu, M. A. El Khakani, D. Ma, Nanoscale, 7, 10039–10049, 2015.

    Article  CAS  Google Scholar 

  9. K.R. Catchpole and A. Polman, Optics Express,16, 26, 21793–21800, 2008.

    Article  CAS  Google Scholar 

  10. H. A. Atwater, A. Polman, Nat. Mater, 9, 205–213, 2010.

    Article  CAS  Google Scholar 

  11. T. Kawawaki, T. Tatsuma, Phys.Chem. Chem. Phys., 15, 20247–20251, 2013.

    Article  CAS  Google Scholar 

  12. J. Li, S. K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, Alan D. Bristow, and N. Wu, ACS Catal., 3 (1), 47–51, 2013.

    Article  CAS  Google Scholar 

  13. T. Kawawaki, H. Wang, T. Kubo, K. Saito, J. Nakazaki, H. Segawa, and T. Tatsuma, ACS Nano, 9 (4), 4165–4172, 2015.

    Article  CAS  Google Scholar 

  14. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. Sun, Nano Lett., Vol. 5, No. 2, 2005.

  15. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P.Yang, Angew. Chem. Int. Ed., 42: 3031–3034, 2003.

    Article  CAS  Google Scholar 

  16. J.H. Park, Y.T. Lim, O. O. Park, J. K. Kim, J.W. Yu, and Y. C. Kim, Chem. Mater., 16 (4), 688–692, 2004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, G., Sabalo, K., MacDonald, N. et al. Photocurrent Enhancement by Introducing Gold Nanoparticles in Nanostructures Based Heterojunction Solar Cell Device. MRS Advances 2, 817–824 (2017). https://doi.org/10.1557/adv.2017.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.146

Navigation