Skip to main content
Log in

Integrating 2D electron gas oxide heterostructures on silicon using rare-earth titanates

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Integrating oxide heterostructures on silicon has the potential to leverage the multifunctionalities of oxide systems into semiconductor device technology. We present the growth and characterization of two-dimensional electron gas (2DEG) oxide systems LaTiO3/SrTiO3 (LTO/STO) and GdTiO3/SrTiO3 (GTO/STO) on Si(001). We show interface-based conductivity in the oxide films and measure high electron densities ranging from ~9 x 1013 cm-2 interface-1 in GTO/STO/Si to ~9 x 1014 cm-2 interface-1 in LTO/STO/Si. We attribute the higher measured carrier density in the LTO/STO films to a higher concentration of interface-bound oxygen vacancies arising from a lower oxygen partial pressure during growth. These vacancies donate conduction electrons and result in an increased measured carrier density. The integration of such 2DEG oxide systems with silicon provides a bridge between the diverse electronic properties of oxide systems and the established semiconductor platform and points toward new devices and functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ohtomo and H. Y. Hwang, Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. K. Shibuya, T. Ohnishi, M. Kawasaki, H. Koinuma, and M. Lippmaa, Jpn. J. Appl. Phys., Part 2 43, LI 178 (2004).

    Article  CAS  Google Scholar 

  3. P. Moetakef, J. Y. Zhang, A. Kozhanov, B. Jalan, R. Seshadri, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 98, 112110 (2011).

    Article  Google Scholar 

  4. J. Y. Zhang, C. A. Jackson, R. Chen, S. Raghavan, P. Moetakef, L. Balents, and S. Stemmer, Phys. Rev. B 89, 075140 (2014).

    Article  Google Scholar 

  5. C. A. Jackson, J. Y. Zhang, C. R. Freeze, and S. Stemmer, Nat. Commun. 5, 4258 (2014)

    Article  CAS  Google Scholar 

  6. P. Xu, D. Phelan, J. S. Jeong, K. A. Mkhoyan, and B. Jalan, Appl. Phys. Lett. 104, 082109 (2014).

    Article  Google Scholar 

  7. S. S. A. Seo, W. S. Choi, H. N. Lee, L. Yu, K. W. Kim, C. Bernhard, and T. W. Noh, Phys. Rev. Lett. 99, 266801 (2007).

    Article  CAS  Google Scholar 

  8. Y. J. Chang, L. Moreschini, A. Bostwick, G. A. Gaines, Y. S. Kim, A. L. Walter, B. Freelon, A. Tebano, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 111, 126401 (2013).

    Article  Google Scholar 

  9. A. Janotti, L. Bjaalie, L. Gordon, and C. G. Van de Walle, Phys. Rev. B 86, 241108 (2012).

    Article  Google Scholar 

  10. R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014–3017 (1998).

    Article  CAS  Google Scholar 

  11. J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, Adv. Mater. 22, 2919 (2010).

    Article  CAS  Google Scholar 

  12. E. N. Jin, L. Kornblum, D. P. Kumah, K. Zou, C. C. Broadbridge, J. H. Ngai, C. H. Ahn, and F. J. Walker, APL Mater. 2, 116109 (2014).

    Article  Google Scholar 

  13. L. Kornblum, E. N. Jin, D. P. Kumah, A. T. Ernst, C. C. Broadbridge, C. H. Ahn, and F. J. Walker, Appl. Phys. Lett. 106(20), 201602 (2015).

    Article  Google Scholar 

  14. L. Kornblum, E. N. Jin, O. Shoron, M. Boucherit, S. Rajan, C. H. Ahn, and F. J. Walker, J. Appl. Phys. 118, 105301 (2015).

    Article  Google Scholar 

  15. X. Gu, D. Lubyshev, J. Batzel, J. M. Fastenau, W. K. Liu, R. Pelzel, J. F. Magana, Q. Ma, L. P. Wang, P. Zhang, and V. R. Rao, J. Vac. Sci. Technol., B 27, 1195–1199 (2009).

    Article  CAS  Google Scholar 

  16. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Appl. Phys. Lett. 80, 3922 (2002).

    Article  CAS  Google Scholar 

  17. A. Annadi, Z. Huang, K. Gopinadhan, X. R. Wang, A. Srivastava, Z. Q. Liu, H. H. Ma, T. P. Sarkar, T. Venkatesan, and Ariando, Phys. Rev. B 87, 201102 (2013).

    Article  Google Scholar 

  18. Z. Q. Liu, C. J. Li, W. M. Lti, X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen, J. M. D. Coey, T. Venkatesan, and Ariando, Phys. Rev. X 3,021010(2013).

    Google Scholar 

  19. A. Fete, C. Cancellieri, D. Li, D. Stornaiuolo, A. D. Caviglia, S. Gariglio, and J.-M. Triscone, Appl. Phys. Lett. 106, 051604 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Jin.

Additional information

Eric N. Jin and Lior Kornblum contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, E.N., Kornblum, L., Ahn, C.H. et al. Integrating 2D electron gas oxide heterostructures on silicon using rare-earth titanates. MRS Advances 1, 287–292 (2016). https://doi.org/10.1557/adv.2016.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.95

Navigation