Abstract
Advanced reduced activation ferritic/martensitic steels and oxide dispersion-strengthened steels exhibit significant radiation embrittlement under low temperature neutron irradiation. In this study we focused on atom probe tomography (APT) of Eurofer97 and ODS Eurofer steels irradiated with neutrons and heavy ions at low temperatures. Previous TEM studies revealed dislocation loops in the neutron-irradiated f\m steels. At the same time, our APT showed early stages of solid solution decomposition. High density (1024 m–3) of ∼3–5 nm clusters enriched in chromium, manganese, and silicon atoms were found in Eurofer 97 irradiated in BOR-60 reactor to 32 dpa at 332°C. In this steel irradiated with Fe ions up to the dose of 24 dpa, pair correlation functions calculated using APT data showed the presence of Cr-enriched pre-phases.
APT study of ODS Eurofer found a significant change in the nanocluster composition after neutron irradiation to 32 dpa at 330 °C and an increase in cluster number density. APT of ODS steels irradiated with Fe ions at low temperatures revealed similar changes in nanoclusters.
These results suggest that irradiation-induced nucleation and evolution of very small precipitates may be the origin of low temperature radiation embrittlement of f\m steels.
Similar content being viewed by others
References
R. Lindau, A. Möslang, M. Rieth, M. Klimiankou, E. Materna Morris, A. Alamo, F. Tavassoli, C. Cayron, M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf , E. Lucon, and W. Dietz, Fusion Eng. Des. 75–79, 989–996 (2005).
R. Lindau, A. Möslang, M. Schirra, P. Schlossmacher, M. Klimenkov, J. Nucl. Mater. 307–311, 769 (2002).
Ch.Ch. Eiselt, M. Klimenkov, R. Lindau, A. Möslang, H.R.Z. Sandim, A.F. Padilha, D. Raabe, J. Nucl. Mater. 385, 231 (2009).
M. Klimiankou, R. Lindau, A. Möslang, J. Nucl. Mater. 329–333, 347–351 (2004).
A.A. Aleev, N.A. Iskandarov, M. Klimenkov, R. Lindau, A. Möslang, A.A. Nikitin, S.V. Rogozhkin, P. Vladimirov, and A.G. Zaluzhnyi, J. Nucl. Mater. 409, 65–71 (2011).
A.-A.F. Tavassoli, A. Alamo, L. Bedel, L. Forest, J.-M. Gentzbittel, J.-W. Rensman, E. Diegele, R. Lindau, M. Schirra, R. Schmitt, H.C. Schneider, C. Petersen, A.-M. Lancha, P. Fernandez, G. Filacchioni, M.F. Maday, K. Mergia, N. Boukos, Baluc, P. Spatig, E. Alves , E. Lucon, J. Nucl. Mater. 329–333, 257–262 (2004).
B. van der Schaaf, F. Tavassoli, C. Fazio, E. Rigal, E. Diegele, R. Lindau, G. LeMarois, Fusion Eng. Des. 69, 197–203 (2003).
C. Petersen, A. Povstyanko, V. Prokhorov, A. Fedoseev, O. Makarov, and B. Dafferner, J. Nucl. Mater. 367–370, 544–549 (2007).
J. Henry, X. Averty, and A. Alamo, J. Nucl. Mater. 417, 99–103 (2011).
S.V. Rogozhkin, A.A. Aleev, A.G. Zaluzhnyi, A.A. Nikitin, N.A. Iskandarov, P. Vladimirov, R. Lindau, and A. Möslang, J. Nucl. Mater. 409, 94–99 (2011).
S.V. Rogozhkin, A.A. Nikitin, A.A. Aleev, A.B. Germanov, A.G. Zaluzhnyi, Inorg. Mater. Appl. Res. 4 (2), 112–118 (2013).
R. Coppola, R. Lindau, R.P. May, A. Möslang, and M. Valli, J. Nucl. Mater. 386–388, 195– 198 (2009).
E. Materna Morris, A. Möslang, R. Rolli, and H.C. Schneider, J. Nucl. Mater. 386–388, 422– 425 (2009).
E. Materna Morris, A. Möslang, R. Rolli, and H.C. Schneider, Fus. Eng. Des. 86, 2607–2610 (2011).
M. Klimenkov, E. Materna Morris, and A. Möslang, J. Nucl. Mater. 417, 124–126 (2011).
O.J. Weiß, E. Gaganidze and J. Aktaa, Quantative, Adv. Sci. Technol. (Faenza, Italy) 73, 118–123 (2010).
E. Gaganidze, C.Petersen, E. Materna Morris, C. Dethloff, O.J. Weiß, J. Aktaa, A. Povstyanko, A. Fedoseev, O. Makarov, and V. Prokhorov, J. Nucl. Mater. 417, 93–98 (2011).
N. V. Luzginova, J. Rensman, P. Pierick, and J. B. J. Hegeman, J. Nucl. Mater. 428, 192–196 (2012).
D. A. McClintock, M. A. Sokolov, D. T. Hoelzer, and R. K. Nanstad, J. Nucl. Mater. 392, 353–359 (2009).
E. Lucon, A. Leenaers, and W. Vandermeulen, Fusion Eng. Des. 82, 2438–2443 (2007).
C. Dethloff , E. Gaganidze, J. Aktaa, J. Nucl. Mater. 454, 323–331 (2014).
S. V. Rogozhkin, N. N. Orlov, b, A. A. Aleev, A. G. Zaluzhnyi, M. A. Kozodaev, R. P. Kuibida, T. V. Kulevoi, A. A. Nikitin, B. B. Chalykh, R. Lindau, A. Möslang, and P. Vladimirov, Phys. Met. Metallogr. 116 (1), 72–78 (2015).
S. Rogozhkin, A. Bogachev, O. Korchuganova, A. Nikitin, N. Orlov, A. Aleev, A. Zaluzhnyi, M.Kozodaev, T. Kulevoy, B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, M. Klimenkov, M. Heilmaier, J. Wagner, S. Seils, J. Nucl. Mater. Energy (2016) doi:10.1016/j.nme.2016.06.011
S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibeda, T. V. Kulevoy, A. A. Nikitin, N. N. Orlov, B. B. Chalyh, V.B. Shishmarev, Phys. Met. Metallogr. 113 (2), 200–211 (2012).
G. Kropachev, R. Kuibeda, A. Kozlov, B. Chalyh, A.D. Fertman, T. Kulevoy, A. Nikitin, A. Aleev, S. Rogozhkin, Rev. Sci. Instrum. 81 (1), 02B906 (2010).
M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level, New York: Kluwer, (2000).
M. Klimenkov, R. Lindau, A. Möslang, J. Nucl. Mater. 386–388, 553–556 (2009).
G.E. Lucas, J. Nucl. Mater. 206, 287–305 (1993).
F. Danoix and P. Auger, Mater. Charact. 44,177–201 (2000).
S. V. Rogozhkin, O. A. Korchuganova, A. A. Aleev, Inorg. Mater. Appl. Res. 7 (2), 210–213 (2016).
D. Brimbal, L. Beck, O. Troeber, E. Gaganidze, P. Trocellier, J. Aktaa, R. Lindau, J. Nucl. Mater. 465, 236–244 (2015).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rogozhkin, S., Nikitin, A., Orlov, N. et al. Evolution of microstructure in advanced ferritic-martensitic steels under irradiation: the origin of low temperature radiation embrittlement. MRS Advances 2, 1143–1155 (2017). https://doi.org/10.1557/adv.2016.657
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2016.657