Skip to main content
Log in

Skin Hydration Sensor for Customizable Electronic Textiles

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This paper introduces the design and simulated operation of a capacitive hydration sensor for integration into textile-based electronics. The multilayer patch is composed of a textile layer and an attached series of serpentine-interdigitated electrodes. The model used for simulations incorporated this design onto a representative model of skin. The serpentine-interdigitated electrodes are electrodes for capacitive measurement of skin hydration. In this study, the capacitance change relative to skin hydration was simulated using finite element analysis. The simulation results suggest the fabric layer had little effect on the capacitance of the sensor. Furthermore, the frequency domain simulations indicated that the capacitance of the sensor decreased with increasing frequency, and the decrease in capacitance was more significant for the dry skin compared to the wet skin. Therefore, the variation in the capacitance value of the serpentine-interdigitated electrodes can be employed for continuous skin hydration detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.M. Popkin, K.E. D’Anci, and I.H. Rosenberg, Nutr. Rev. 68, 439 (2010).

    Article  Google Scholar 

  2. P. Clarys, R. Clijsen, J. Taeymans, and A.O. Barel, Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin ISBS Int. Soc. Digit. Imaging Skin ISDIS Int. Soc. Skin Imaging ISSI 18, 316 (2012).

    Google Scholar 

  3. E. Berardesca and European Group for Efficacy Measurements on Cosmetics and Other Topical Products (EEMCO), Skin Res. Technol. 3, 126 (1997).

    Article  CAS  Google Scholar 

  4. D.S. Moran, Y. Heled, M. Margaliot, Y. Shani, A. Laor, S. Margaliot, E.E. Bickels, and Y. Shapiro, Physiol. Meas. 25, 51 (2004).

    Article  Google Scholar 

  5. Al-omari Mahmoud, G. Liu, A. Mueller, A. Mock, R.N. Ghosh, K. Smith, and T. Kaya, J. Appl. Phys. 116, 183102 (2014).

    Article  Google Scholar 

  6. S.L. Zhang, C.L. Meyers, K. Subramanyan, and T.M. Hancewicz, J. Biomed. Opt. 10, 031107 (2005).

    Article  Google Scholar 

  7. X. Huang, W.-H. Yeo, Y. Liu, and J.A. Rogers, Biointerphases 7, 1 (2012).

    Article  Google Scholar 

  8. P. Wei, B. Morey, T. Dyson, N. McMahon, Y.-Y. Hsu, S. Gazman, L. Klinker, B. Ives, K. Dowling, and C. Rafferty, in 2013 IEEE Sens. (2013), pp. 1–4.

  9. X. Huang, Y. Liu, H. Cheng, W.-J. Shin, J.A. Fan, Z. Liu, C.-J. Lu, G.-W. Kong, K. Chen, D. Patnaik, S.-H. Lee, S. Hage-Ali, Y. Huang, and J.A. Rogers, Adv. Funct. Mater. 24, 3846 (2014).

    Article  CAS  Google Scholar 

  10. W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G.A. Brooks, R.W. Davis, and A. Javey, Nature 529, 509 (2016).

    Article  CAS  Google Scholar 

  11. A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdés-Ramírez, F.J. Andrade, M.J. Schöning, and J. Wang, Biosens. Bioelectron. 54, 603 (2014).

    Article  CAS  Google Scholar 

  12. D.S. Gray, J. Tien, and C.S. Chen, Adv. Mater. 16, 393 (2004).

    Article  CAS  Google Scholar 

  13. Y. Wang, N. Chong, Y.L. Cheng, H.L.W. Chan, and C.L. Choy, Microelectron. Eng. 66, 880 (2003).

    Article  CAS  Google Scholar 

  14. S.S. Gevorgian, T. Martinsson, P.L.J. Linner, and E.L. Kollberg, IEEE Trans. Microw. Theory Tech. 44, 896 (1996).

    Article  Google Scholar 

  15. D. Miklavčič, N. Pavšelj, and F. Hart, Wiley Encyclopedia of Biomedical Engineering. (2006).

  16. S. Gabriel, R.W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2271 (1996).

    Article  CAS  Google Scholar 

  17. COMSOL AC/DC Module User’s Guide, Version 5.2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokus, M.A., Daniele, M.A. Skin Hydration Sensor for Customizable Electronic Textiles. MRS Advances 1, 2671–2676 (2016). https://doi.org/10.1557/adv.2016.540

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.540

Navigation