Abstract
This paper introduces the design and simulated operation of a capacitive hydration sensor for integration into textile-based electronics. The multilayer patch is composed of a textile layer and an attached series of serpentine-interdigitated electrodes. The model used for simulations incorporated this design onto a representative model of skin. The serpentine-interdigitated electrodes are electrodes for capacitive measurement of skin hydration. In this study, the capacitance change relative to skin hydration was simulated using finite element analysis. The simulation results suggest the fabric layer had little effect on the capacitance of the sensor. Furthermore, the frequency domain simulations indicated that the capacitance of the sensor decreased with increasing frequency, and the decrease in capacitance was more significant for the dry skin compared to the wet skin. Therefore, the variation in the capacitance value of the serpentine-interdigitated electrodes can be employed for continuous skin hydration detection.
Similar content being viewed by others
References
B.M. Popkin, K.E. D’Anci, and I.H. Rosenberg, Nutr. Rev. 68, 439 (2010).
P. Clarys, R. Clijsen, J. Taeymans, and A.O. Barel, Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin ISBS Int. Soc. Digit. Imaging Skin ISDIS Int. Soc. Skin Imaging ISSI 18, 316 (2012).
E. Berardesca and European Group for Efficacy Measurements on Cosmetics and Other Topical Products (EEMCO), Skin Res. Technol. 3, 126 (1997).
D.S. Moran, Y. Heled, M. Margaliot, Y. Shani, A. Laor, S. Margaliot, E.E. Bickels, and Y. Shapiro, Physiol. Meas. 25, 51 (2004).
Al-omari Mahmoud, G. Liu, A. Mueller, A. Mock, R.N. Ghosh, K. Smith, and T. Kaya, J. Appl. Phys. 116, 183102 (2014).
S.L. Zhang, C.L. Meyers, K. Subramanyan, and T.M. Hancewicz, J. Biomed. Opt. 10, 031107 (2005).
X. Huang, W.-H. Yeo, Y. Liu, and J.A. Rogers, Biointerphases 7, 1 (2012).
P. Wei, B. Morey, T. Dyson, N. McMahon, Y.-Y. Hsu, S. Gazman, L. Klinker, B. Ives, K. Dowling, and C. Rafferty, in 2013 IEEE Sens. (2013), pp. 1–4.
X. Huang, Y. Liu, H. Cheng, W.-J. Shin, J.A. Fan, Z. Liu, C.-J. Lu, G.-W. Kong, K. Chen, D. Patnaik, S.-H. Lee, S. Hage-Ali, Y. Huang, and J.A. Rogers, Adv. Funct. Mater. 24, 3846 (2014).
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G.A. Brooks, R.W. Davis, and A. Javey, Nature 529, 509 (2016).
A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdés-Ramírez, F.J. Andrade, M.J. Schöning, and J. Wang, Biosens. Bioelectron. 54, 603 (2014).
D.S. Gray, J. Tien, and C.S. Chen, Adv. Mater. 16, 393 (2004).
Y. Wang, N. Chong, Y.L. Cheng, H.L.W. Chan, and C.L. Choy, Microelectron. Eng. 66, 880 (2003).
S.S. Gevorgian, T. Martinsson, P.L.J. Linner, and E.L. Kollberg, IEEE Trans. Microw. Theory Tech. 44, 896 (1996).
D. Miklavčič, N. Pavšelj, and F. Hart, Wiley Encyclopedia of Biomedical Engineering. (2006).
S. Gabriel, R.W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2271 (1996).
COMSOL AC/DC Module User’s Guide, Version 5.2.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yokus, M.A., Daniele, M.A. Skin Hydration Sensor for Customizable Electronic Textiles. MRS Advances 1, 2671–2676 (2016). https://doi.org/10.1557/adv.2016.540
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2016.540