Skip to main content
Log in

Metasurfaces with Fano resonances for directionally selective thermal emission

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Thermal emission impacts a wide variety of applications, including thermophotovoltaics, photovoltaics, photon-enhanced thermionic emission, selective solar absorption, incandescent lighting, and spectroscopy. Ordinary structures generally emit a broad range of wavelengths, angles, and polarizations. However, highly selective thermal emission has potential to greatly improve performance in many of these applications. While prior work has explored a wide range of structures to provide some degree of control of one or more of these attributes, there is an ongoing challenge in combining readily-fabricated, simple structures made of appropriate (e.g., heat-resistant) materials with the desired functionality. Here, we will focus on using metasurfaces in conjunction with refractory materials as a platform for achieving selective control of emission. These structures are built from sub-wavelength elements that support localization of surface plasmon polaritons or electromagnetic resonant modes with appropriate attributes. Modeling is performed using rigorous coupled wave analysis (RCWA), plus Kirchhoff’s law of thermal radiation, which is further validated using finite-difference time domain (FDTD) simulations and coupled-mode analysis. Such structures can be considered arbitrarily directional sources that can be carefully patterned in lateral directions to yield a thermal lens with a designed focal length and/or concentration ratio; the benefit of this approach is that it can enhance the view factor between thermal emitters and receivers, without restricting the area ratio or separation distance. This design and modeling platform is then applied to exclude thermal radiation over a certain range of angles. In this work, we study the effect of controlling the angular width and direction on the view factor, and we explore angular dependence of these angular selective structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Bauer, Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Green Energy and Technology (Springer, 2011).

  2. O. Vigil, C. M. Ruiz, D. Seuret, V. Bermúdez, and E. Diéguez, “Transparent conducting oxides as selective filters in thermophotovoltaic devices,” J. Phys. Condens. Matter 17, 6377–6384 (2005).

    Article  CAS  Google Scholar 

  3. Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Infrared reflection characteristics in InN thin films grown by magnetron sputtering for the application of plasma filters,” J. Appl. Phys. 92, 3683 (2002).

    Article  CAS  Google Scholar 

  4. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).

    Article  Google Scholar 

  5. C. K. Carniglia, “Comparison of several shortwave pass filter designs,” Appl. Opt. 28, 2820–3 (1989).

    Article  CAS  Google Scholar 

  6. U. Ortabasi, “Rugate Technology For Thermophotovoltaic (TPV) Applications: A New Approach To Near Perfect Filter Performance,” in Fifth Conference on Thermophotovoltaic Generation of Electricity (AIP Publishing, 2003), Vol. 653, pp. 249–258.

    Google Scholar 

  7. E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105, 111107 (2014).

    Article  Google Scholar 

  8. Z. Zhou, O. Yehia, and P. Bermel, “Integrated photonic crystal selective emitter for thermophotovoltaics,” J. Nanophotonics 10, 016014 (2016).

    Article  Google Scholar 

  9. E. Sakr, S. Dhaka, and P. Bermel, “Asymmetric angular-selective thermal emission,” in Proc. SPIE 9743, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices V (2016), Vol. 9743, p. 97431D.

    Google Scholar 

  10. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science (80-. ). 347, 1342–1345 (2015).

  11. M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of Surface Plasmon Polariton Waves,” Opt. Express 18, 8800 (2010).

    Article  CAS  Google Scholar 

  12. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623 (2005).

    Article  CAS  Google Scholar 

  13. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources.,” Nature 416, 61–4 (2002).

    Article  CAS  Google Scholar 

  14. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15, 11427 (2007).

    Article  CAS  Google Scholar 

  15. M. F. Modest, Radiative Heat Transfer (Academic Press, 2013).

    Book  Google Scholar 

  16. K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907 (1997).

    Article  Google Scholar 

  17. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).

    Google Scholar 

  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

    Google Scholar 

  19. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).

    Article  CAS  Google Scholar 

  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811 (1981).

    Article  Google Scholar 

  21. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).

    Article  CAS  Google Scholar 

  22. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

    Article  CAS  Google Scholar 

  23. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    Article  CAS  Google Scholar 

  24. D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Emulating one-dimensional resonant Q -matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A - At. Mol. Opt. Phys. 74, 1–4 (2006).

    Google Scholar 

  25. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756–6769 (1997).

    Article  CAS  Google Scholar 

  26. R. Shugayev and P. Bermel, “Time-domain simulations of nonlinear interaction in microring resonators using finite-difference and coupled mode techniques.,” Opt. Express 22, 19204–18 (2014).

    Article  Google Scholar 

  27. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, 2008).

    Google Scholar 

  28. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors.,” Opt. Express 18, 16973–16988 (2010).

    Article  Google Scholar 

  29. J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103, (2013).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakr, E., Dimonte, D. & Bermel, P. Metasurfaces with Fano resonances for directionally selective thermal emission. MRS Advances 1, 3307–3316 (2016). https://doi.org/10.1557/adv.2016.526

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.526

Navigation