Skip to main content
Log in

Two phase microfluidics with inviscid drops: Effects of total flow rate and delayed surfactant addition

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The microfluidic production of droplets is a well controllable process, which allows templating small spherical containers that can subsequently be transferred into uniformly sized polymer microgel particles by a crosslinking reaction. Recently, the per-channel production rate of N-isopropylacrylamide (NIPAAm) droplets (w-phase) dispersed in a low-viscosity fluorocarbon oil (o-phase) could be increased by a delayed surfactant addition, while maintaining the advantageous dripping regime. Here it should be evaluated, if delayed surfactant addition can be applied to enhance droplet production also for high viscosity continuous phases, which is associated with a change to an inviscid drop scenario compared to the previously used setting of viscous drops. It could be illustrated that the concept of delayed surfactant addition holds true also for viscous continuous phases and allows ∼8 fold increased flow rates in the dripping regime. Surprisingly, the droplet size increased at higher total flow rate with constant flow rate ratios of w- and o-phases, which is discussed in the light of viscous dissipation, microchannel bulging and viscosity of the continuous phase. More rigid microchannels such as from glass may allow further exploring this phenomenon in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Baroud, F. Gallaire and R. Dangla, Lab Chip 10, 2032 (2010).

    Article  CAS  Google Scholar 

  2. E. Y. Basova and F. Foret, Analyst 140, 22 (2015).

    Article  CAS  Google Scholar 

  3. S. Seiffert, Angew Chem Int Edit 52, 11462 (2013).

    Article  CAS  Google Scholar 

  4. G. T. Vladisavljević, N. Khalid, M. A. Neves, T. Kuroiwa, M. Nakajima, K. Uemura, S. Ichikawa and I. Kobayashi, Advanced Drug Delivery Reviews 65, 1626 (2013).

    Article  Google Scholar 

  5. S. Seiffert, F. Friess, A. Lendlein and C. Wischke, J Colloid Interface Sci 452, 38 (2015).

    Article  CAS  Google Scholar 

  6. A. S. Utada, A. Fernandez-Nieves, H. A. Stone and D. A. Weitz, Phys Rev Lett 99 (2007).

  7. T. Ward, M. Faivre, M. Abkarian and H. A. Stone, Electrophoresis 26, 3716 (2005).

    Article  CAS  Google Scholar 

  8. C. A. Stan, S. K. Y. Tang and G. M. Whitesides, Anal Chem 81, 2399 (2009).

    Article  CAS  Google Scholar 

  9. J. M. Koo and C. Kleinstreuer, J Micromech Microeng 13, 568 (2003).

    Article  Google Scholar 

  10. B. H. Weigl, R. L. Bardell and C. Cabrera, “Introduction to Microfluidic Techniques”, Handbook of Biosensors and Biochips (John Wiley & Sons, Ltd2008).

  11. H. H. Winter, “Viscous dissipation term in energy equations”, Modular Instruction, Series C: Transport, Volume 7: Calculation and Measurement Techniques for Momentum, Energy, and Mass Transfer, Module C 7.4 ed. R. J. Gordon (American Institute of Chemical Engineers1987), pp. 27.

  12. R. Dangla, F. Gallaire and C. N. Baroud, Lab Chip 10, 2972 (2010).

    Article  CAS  Google Scholar 

  13. M. A. Holden, S. Kumar, A. Beskok and P. S. Cremer, J Micromech Microeng 13, 412 (2003).

    Article  Google Scholar 

  14. P. A. Romero and A. R. Abate, Lab Chip 12, 5130 (2012).

    Article  CAS  Google Scholar 

  15. T. Cubaud, B. M. Jose, S. Darvishi and R. P. Sun, Int J Multiphas Flow 39, 29 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friess, F., Lendlein, A. & Wischke, C. Two phase microfluidics with inviscid drops: Effects of total flow rate and delayed surfactant addition. MRS Advances 1, 2019–2024 (2016). https://doi.org/10.1557/adv.2016.493

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.493

Navigation