Skip to main content
Log in

Graphene Quantum Dot - Titania Nanoparticle Composite for Photocatalytic Water Splitting

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) of different sizes were synthesized by the top-down approach, using charcoal as the precursor material. Size and absorption characteristics of synthesized GQDs were analyzed using Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Photoluminescence Spectroscopy (PL), and UV-vis Spectroscopy. The results showed that GQDs with an average height of 8.5 nm, synthesized at a relatively lower temperature of 85°C, exhibited higher UV and visible light absorption. GQD concentration was varied to form 0.5, 1, 2.5, and 5 wt.% GQD-titania (TiO2) nano composites. Surface morphology of the composite was examined using Scanning Electron Microscopy (SEM). Photocatalytic activity of the samples was assessed from methylene blue dye degradation in UV irradiation at 340nm. A distinguishable trend for pure TiO2 and composites at various concentrations were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev., vol. 11, no. 3, pp. 401–425, 2007.

    Article  CAS  Google Scholar 

  2. J. Lee, D. Kim, J. Park, Y. Cha, J. Y. Yoon, H. S. Jeon, B. K. Min, M. T. Swihart, S. Jin, S. S. Al-deyab, and S. S. Yoon, “Graphene – Titania Hybrid Photoanodes by Supersonic Kinetic Spraying for Solar Water Splitting,” vol. 3668, no. 34885, pp. 3660–3668, 2014.

    Google Scholar 

  3. P. Wang, Y. Ao, C. Wang, J. Hou, and J. Qian, “Enhanced photoelectrocatalytic activity for dye degradation by graphene - titania composite film electrodes,” J. Hazard. Mater., vol. 223–224, pp. 79–83, 2012.

    Article  CAS  Google Scholar 

  4. K. T. Dembele, G. S. Selopal, C. Soldano, R. Nechache, J. C. Rimada, I. Concina, G. Sberveglieri, F. Rosei, and A. Vomiero, “Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells,” J. Phys. Chem. C, vol. 117, no. 28, pp. 14510– 14517, 2013.

    Article  CAS  Google Scholar 

  5. A. Adán-Más and D. Wei, “Photoelectrochemical Properties of Graphene and Its Derivatives,” Nanomaterials, vol. 3, no. 3, pp. 325–356, 2013.

    Article  Google Scholar 

  6. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, “Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction,” ACS Nano, vol. 4, no. 11, pp. 6425–6432, 2010.

    Article  CAS  Google Scholar 

  7. D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, and M. Wu, “Efficient Separation of Electron-Hole Pairs in Graphene Quantum Dots by TiO2 Heterojunctions for Dye Degradation,” ACS Sustain. Chem. Eng., vol. 3, no. 10, pp. 2405–2413, 2015.

    Article  CAS  Google Scholar 

  8. J. Lu, P. S. E. Yeo, C. K. Gan, P. Wu, and K. P. Loh, “Transforming C60 molecules into graphene quantum dots,” Nat Nano, vol. 6, no. 4, pp. 247–252, Apr. 2011.

    Article  CAS  Google Scholar 

  9. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater., vol. 22, no. 4, pp. 505–509, 2010.

    Article  CAS  Google Scholar 

  10. L. Tapaszto, G. Dobrik, P. Lambin, and L. P. Biro, “Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography,” Nat Nano, vol. 3, no. 7, pp. 397–401, Jul. 2008.

    Article  CAS  Google Scholar 

  11. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C. Hwang, G. Ruan, G. Ceriotti, A. O. Raji, J. M. Tour, and A. A. Martı, “Coal as an abundant source of graphene quantum dots,” Nature Communications., vol. 4, pp. 1–7, 2013.

    Google Scholar 

  12. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, “Graphene quantum dots derived from carbon fibers,” Nano Lett., vol. 12, no. 2, pp. 844–849, 2012.

    Article  CAS  Google Scholar 

  13. D. Tan, S. Zhou, and J. Qiu, “Comment on ‘Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis,’” ACS Nano, vol. 6, no. 2, pp. 6530–6531, 2012.

    Article  CAS  Google Scholar 

  14. X. Luan, M. T. Gutierrez, and Y. Wang, “Enhanced photocatalytic activity of graphene oxide / titania nanosheets composites for methylene blue degradation,” Mater. Sci. Semicond. Process., vol. 30, pp. 592–598, 2015.

    Article  CAS  Google Scholar 

  15. S. Zhu, L. Wang, B. Li, Y. Song, X. Zhao, G. Zhang, S. Zhang, S. Lu, J. Zhang, H. Wang, H. Sun, and B. Yang, “Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots,” Carbon N. Y., vol. 77, pp. 462–472, 2014.

    Article  CAS  Google Scholar 

  16. H. Li, J. Xing, Z. Xia, and J. Chen, “Preparation of coaxial heterogeneous graphene quantum dots sensitized TiO2 nanotube arrays via linker molecules binding and electrophoretic,” Carbon N. Y., vol. 1, 2014.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnusamy Jayanthi, S., Kaur, R. & Erogbogbo, F. Graphene Quantum Dot - Titania Nanoparticle Composite for Photocatalytic Water Splitting. MRS Advances 1, 2071–2077 (2016). https://doi.org/10.1557/adv.2016.470

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.470

Navigation