Skip to main content
Log in

Bandgap Engineering of Amorphous Hydrogenated Silicon Carbide

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A simple model to describe the fundamental absorption of amorphous hydrogenated silicon carbide thin films based on band fluctuations is presented. It provides a general equation describing both the Urbach and Tauc regions in the absorption spectrum. In principle, our model is applicable to any amorphous material and it allows the determination of the bandgap. Here we focus on the bandgap engineering of amorphous hydrogenated silicon carbide layers. Emphasis is given on the role of hydrogen dilution during the deposition process and post deposition annealing treatments. Using the conventional Urbach and Tauc equations, it was found that an increase/decrease of the Urbach energy produces a shrink/enhancement of the Tauc-gap. On the contrary, the here proposed model provides a bandgap energy which behaves independently of the Urbach energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Liu et al, J. Micromech. Microeng. 20, 035011 (2010).

    Article  Google Scholar 

  2. M. A. Fraga et al, J. Mater. Sci. Mater. Electron. 19, 835 (2007).

    Article  Google Scholar 

  3. B. N. Pushpakaran et al, Renew. Sust. Energ. Rev. 55, 971 (2016).

    Article  CAS  Google Scholar 

  4. F. Zhu et al, Philos. Mag. 89, 2723 (2009).

    Article  CAS  Google Scholar 

  5. G. R. Fisher and P. Barnes, Philos. Mag. Part B. 61, 217 (1990).

    Article  CAS  Google Scholar 

  6. F. Zhu et al, Philos. Mag. 89, 2723 (2009).

    Article  CAS  Google Scholar 

  7. J. A. Guerra et al, J. Phys. D: Appl. Phys. 49, 195102 (2016).

    Article  Google Scholar 

  8. H. S. Medeiros et al, Surf. Coat. Technol. 206, 1787 (2011).

    Article  CAS  Google Scholar 

  9. L. R. Tessler and I. Solomon, Phys. Rev. B 52, 10962 (1995).

    Article  CAS  Google Scholar 

  10. J. Tauc, Res. Bull. 3, 37 (1968).

    Article  CAS  Google Scholar 

  11. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  CAS  Google Scholar 

  12. D. J. Dunstan, J. Phys. C: Solid State Phys. 16, L567 (1983).

    Article  CAS  Google Scholar 

  13. S. K. O’Leary and S. Zukotynski, Phys. Rev. B 52, 7795 (1995).

    Article  Google Scholar 

  14. M. Bickermann et al, Mater. Sci. Forum 49, 353 (2001)

    Google Scholar 

  15. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    Article  CAS  Google Scholar 

  16. S. K. O’Leary and S. Zukotynski, Phys. Rev. B 51, 4143 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, J.A., Montañez, L.M., Tucto, K. et al. Bandgap Engineering of Amorphous Hydrogenated Silicon Carbide. MRS Advances 1, 2929–2934 (2016). https://doi.org/10.1557/adv.2016.422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.422

Navigation