Skip to main content
Log in

Production of In, Au, and Pt nanoparticles by discharge plasmas in water for assessment of their bio-compatibility and toxicity

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nanoparticles have great potential for biomedical applications such as early detection, accurate diagnosis, and personalized treatment of cancer. Assessment of bio-compatibility and toxicity of nanoparticles body is an emerging topic for these applications. To study kinetics of nanoparticles in body, we synthesized indium, gold and platinum nanoparticles in aqueous suspension using pulsed electrical discharge plasmas in water. The average size of synthesized primary nanoparticles for indium, gold, and platinum are 6.2 nm, 6.7 nm, and 5.4 nm, whereas the average size of secondary nanoparticles for indium, gold, and platinum are 315 nm, 72.3 nm, and 151 nm, respectively. Synthesized indium nanoparticles are transported from subcutaneous to serum and brain. The indium content in serum for the synthesized nanoparticles is much higher than that for the In2O3 nanoparticles of 150 nm in primary size. For gold and platinum nanoparticles, preliminary examination of intratracheal administration revealed that administration of synthesized nanoparticles with 10 mg/kg BW (body weight) may cause bleedings and/or emphysema in lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chen, B. Liang, D. Lu, A. Ogino, X. Wang, M. Nagatsu, Carbon, 48, 939 (2010).

    Article  CAS  Google Scholar 

  2. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R.S. Langer, and O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008).

    Article  CAS  Google Scholar 

  3. I. Brigger, C.Dubernet, and P. Couvreur, Adv. Drug Deliv. Rev. 54, 631 (2005).

    Article  Google Scholar 

  4. A. Jordan, R. Scholz, P. Wust, H. Fähling, and R. Felix, J. Magn. Magn. Mater. 201, 413 (1999).

    Article  CAS  Google Scholar 

  5. K. Iwai, J. Jpn. Soc. Atmos. Environ. 35, 321 (2000). (in Japanese)

    CAS  Google Scholar 

  6. Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).

    Article  CAS  Google Scholar 

  7. M. Shiratani, H. Kawasaki, T. Fukuzawa, T. Yoshioka, Y. Ueda, S. Singh, Y. Watanabe, J. Appl. Phys. 79, 104 (1996).

    Article  CAS  Google Scholar 

  8. M Shiratani, K Koga, S Iwashita, G Uchida, N Itagaki, K Kamataki, J. Phys. D, 44, 174038 (2011).

    Article  Google Scholar 

  9. H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Electrochim. Acta., 95, 43 (2013).

    Article  CAS  Google Scholar 

  10. A. Tanaka, M. Hirata, M. Shiratani, K. Koga, and Y. Kiyohara, J. Occup. Health 54, 187 (2012).

    Article  CAS  Google Scholar 

  11. A. Tanaka, M. Hirata, Y. Kiyohara, M. Nakano, K. Omae, M. Shiratani, and K. Koga, Thin Solid Films, 2934, 518 (2010).

    Google Scholar 

  12. V. Burakov, A. Butsen, V. Hamisch, P. Misakov, E. Nevar, M. Rosenbaum, N. Savastenko, and N.V. Tarasenko, J. Nanopart. Res. 10, 881 (2008).

    Article  CAS  Google Scholar 

  13. M. Mardaniana, A. A. Nevar, M. Nedel’ko, N. V. Tarasenko, Eur. Phys. J. D 67, 208 (2013).

    Article  Google Scholar 

  14. T. Amano, T. Sarinont, K. Koga, M. Hirata, A. Tanaka, and M. Shiratani, J. Nanosci. Nanotechnol. 11, 9298 (2015).

    Article  Google Scholar 

  15. N. Balcon, A. Aanesland, and R.Boswell, Plasma Sources Sci. Technol. 16, 217 (2007).

    Article  CAS  Google Scholar 

  16. J. Torres, J. M. Palomares, A. Sola, J. J. A. M. van der Mullen, and A. Gamero, J. Phys. D 40, 5929 (2007).

    Article  CAS  Google Scholar 

  17. S. Hofman, A.H. van Gessel, T. Verreychen, and P. Bruggeman, Plasma Source Science and Technology 20, 065010 (2011).

    Article  Google Scholar 

  18. R. Pecora, J. Nanopart. Res. 2, 123 (2000).

    Article  CAS  Google Scholar 

  19. R. C. Murdock, L. Braydich-Stolle, A. M. Schrand, J. J. Schlager, S. M. Hussain, Toxicol. Sci. 101, 239 (2008).

    Article  CAS  Google Scholar 

  20. C. Yubero, M.C. Garcia, and M.D. Calzada, Spectrochimica Acta Part B. 61, 540 (2006).

    Article  Google Scholar 

  21. F. H. Chung, J. Appl. Cryst. 8, 17 (1975).

    Article  Google Scholar 

  22. C. Shifu, Y. Xiaoling, Z. Huaye, and L. Wei, J. Hazard. Mater. 180, 735 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amano, T., Sarinont, T., Koga, K. et al. Production of In, Au, and Pt nanoparticles by discharge plasmas in water for assessment of their bio-compatibility and toxicity. MRS Advances 1, 1301–1306 (2016). https://doi.org/10.1557/adv.2016.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.41

Navigation