Skip to main content
Log in

Effect of Ammonium Acetate Concentration on the Structural and Optical Properties of CdS Thin Film Grown by Chemical Bath Deposition Technique

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This study focuses on understanding the influence of incorporating Ammonium Acetate into the chemical bath used for the deposition of CdS thin films, on its optical, morphology, and microstructural properties. Thus, CdS thin films were deposited on 1” × 2” microscopic glass substrates using chemical bath deposition (CBD) technique. The deposition process was carried out in a double jacket beaker with fixed chemical bath temperature of 90°C for a deposition time of 40 min. The chemical bath solution consisted of fixed concentrations of Cadmium Acetate, Thiourea, and Ammonium Hydroxide; with corresponding values of 4.8×10−4M; 0.97×10−4M; and 0.2M, respectively. However, Ammonium Acetate was incorporated into the deposition bath with concentrations that were varied from 3.0 mM to 12.2 mM. Meanwhile, for comparison purposes associated to the initial physical and chemical properties of the CdS films; reference CdS films were deposited under the same above chemical bath conditions, but in the absence of Ammonium Acetate. The pH of the chemical bath was measured during the deposition process. The films’ morphology and the chemical composition were examined by Field Emission Scanning Electron Microscopy (FE-SEM), and the Energy Dispersive spectrometer (EDS), respectively. The X-Ray Diffraction (XRD) θ/2θ technique was applied to study the structure of the films, including the lattice parameters. Atomic Force Microscopy (AFM) was used to examine the films topography and to determine the root-mean-square (RMS) surface roughness of the films as well as the grain size. Dektak Surface Profilometer was used to determine the CdS films’ thickness, where the films’ optical properties were measured using UV-Vis-NIR spectrometer. Optical energy band gap (Eg), and absorption coefficient (α) were calculated from the transmission spectral data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.Q. Liu, J.H. Shi, Z.Q. Li, D.W. Zhang, S.M. Huang; J. Phys. B405 (2010), 4360–4365

    Google Scholar 

  2. F.Liu, Y.Lai, J.Liu, B.Wang, S.Kuang, Z.Zhang, J.Li, Y.Liu, J.Alloys and Comp. 493 (2010) 305–308

    Article  CAS  Google Scholar 

  3. Limei Zhou, Xiaofei Hu, Sumei Wu; Effects of Deposition Temperature on the Performance of CdS Films with Chemical Bath Deposition; J. Surface and Coating Technology 228 (2013), pp. 5171–5174

    Google Scholar 

  4. Vigil O, Zeleya-Angel O, and Rodriguez Y; Semicond. Sci. Technol. 15 (2000), p. 259.

    Article  CAS  Google Scholar 

  5. I.Kaur, D.K. Pandya, and K.L. Chopra, J. Electrochem. Soc. 127, 943 (1980).

    Article  CAS  Google Scholar 

  6. D.Lincot and J.Vedel, Proc. 10th E.C. Photovolt. Solar Energy Conf., 931(1991).

  7. D.H. Rose, F.S. Hasoon, R.G. Dhere, D.S. Albin, R.M. Ribelin, X.S. Li, Y. Mahathongdy, T.A. Gessert and P.Sheldon; Fabrication Procedures and Process Sensitivities for CdS/CdTe Solar Cells; Progress in Photovoltaics Research and Applications; Prog. Photovolt: Res. Appl. 7 (1999) pp. 331–340.

    Article  CAS  Google Scholar 

  8. D.Lincot, R. Ortega-Borges, J.Vedel; M.Ruckh, J. Kessler, K.O. Velthaus, D.-Hariskos, H.W. Schock; Chemical Bath Deposition of CdS on CuInSe2 Combining Dry and Wet Processes for high Efficiency Thin Film Solar Cells: Proceeding of 11th E.C.Photovoltaic Solar Energy Conference (1992); pp. 870–873.

  9. M.Tomakin, A. Altunbas, E.Bacaksiz, S.Celik; J. Thin Solid Films 520 (2012) 2532–2536.

    Article  CAS  Google Scholar 

  10. N.R. Paudel, K.A. Wieland, A.D. Compaan; J.Solar Ener. Mater. & Soalr Cells 105 (2012) 109–112.

    Article  CAS  Google Scholar 

  11. J.Nishino, S. Chatani, Y. Uotani, Y.Nosaka; J. Electroana. Chem. 473 (1999) 217–-222.

    Article  CAS  Google Scholar 

  12. G.Brunthaler, M.Lang, A.Forstner, C.Giftge, D.Schikora, S.Ferreira, H.Sitter, K.Lischka; J.Cryst.Growth 138 (1994)559.

    Article  CAS  Google Scholar 

  13. R.P. Vaudo, D.B. Eason, K.A.Bowers, K.J.Gosset, J.W. Cook, J.W. Schetsina; J.Vac. Sci. Technol. B11 (1993) 875.

    Article  Google Scholar 

  14. H.Matsumoto, A. Nakayama, S.Ikegami, Y.Hiori; Jpn. J. Appl. Phys. 15 (1980) 129.

    Article  Google Scholar 

  15. H.C. Chou, A. Rohatgi, E.W. Thomas, S. Kamra, A.K. Bhat; J.Electrochem Soc. 142 (1992) 254.

    Article  Google Scholar 

  16. H.C. Chou, A. Rohatgi; J. Electron. Mater. 23 (1994) 31.

    Article  CAS  Google Scholar 

  17. H. S. Kwork, J.P. Zheng, S. Witanachchi, P.Mattocks, L.Shi, Q.Y. Ying, X.W. Wang, D.T. Shaw; Appl. Phys. Lett. 52 (1988) 1095.

    Article  Google Scholar 

  18. T.L. Chu, J. Britt, C.Ferekides, C. Wang, C.Q. Wu; IEEE Trans. Electron. Device Lett. 13 (1992) 303.

    Article  CAS  Google Scholar 

  19. S. Bonilla, E.A. Dalchiele, Thin Solid Films 204 (1991) 397.

    Article  CAS  Google Scholar 

  20. M.A.Green, K.Emery, Y.Hishikawa, W.Warta, and E.D. Dunlop, Solar Cell Efficiency Tables (version 46); Prog. Photovolt: Res. Appl.23 (2015) pp.805 - 812.

    Google Scholar 

  21. A.E. Baumann, K.Hynes, and J.Herrero, Proc. 2nd World Conf. Photovolt. Solar Energy Conv., 735 (1998).

  22. M.A. Barote, A.A. Yadav, E.U. Masumdar; J.Phys. B 406 (2011) 1865–1871.

    Google Scholar 

  23. S.Prabahar, M.Dhanam; J. Crys. Growth 285 (2005) 41–48.

    Article  CAS  Google Scholar 

  24. T.L. Chu, S.S. Chu, C.Q. Wu, J. Britt, And C. Wang, in Proceedings of the 22nd IEEE Photovoltaic Specialists Conferences, (1991) 952.

  25. Raul Ortega-Borges and Daniel Lincot; “Mechanism of Chemical Bath Deposition of Cadmium Sulfide Thin Films in the Ammonia-Thiourea System inSitue Kinetic Study and Modelization; J.Electrochem. Soc. Vol. 140, NO. 12 (1993) pp.3464–3473.

    Article  CAS  Google Scholar 

  26. D. Lincot and R. Ortega-Borges, ibid, 139 (1992) 1880.

    CAS  Google Scholar 

  27. J.Y. Choi, K-J Kim, JI-B Yoo, and D. Kim; Properties of Cadmium Sulfide Thin Films Deposited by Chemical Bath Deposition with Utrasonication; Solar Energy Vol. 64 Nos 1–3, (1998) pp.41–47.

    Article  Google Scholar 

  28. Limei Zhou, Xiaofei Hu, Sumei Wu; Effects of PH Value on Performance of CdS Films with Chemical Bath Deposition, Advanced Materials Research Vols. 557–559 (2012) pp.1941–1944.

    Article  CAS  Google Scholar 

  29. A.Kariper, E. Guneri, F. Gode, and C. Gumus; Effect of PH on the Physical Properties of CdS Thin Films Deposited by CBD; Chalcogenide letters, Vol. 9, NO. 1 (2012). Pp. 27–40.

    CAS  Google Scholar 

  30. R.Y. Munikrishna, V.P.M Nagendra, IOSR J.Appl. Phys. 4 (2013) 3464.

    Google Scholar 

  31. S. Mahanty, D. Basak, F. Rueda, and M. Leon; J. Electron Mater.28 (1999) 559.

    Article  CAS  Google Scholar 

  32. B.R. Lanning, J.H. Armstrong; Int. J. Sol. Energy 12 (1992) 247.

    Article  Google Scholar 

  33. I.O. Oladeji, L. Chow, J.R. Liu, W.K. Chu, A.N.P. Bustamante, C. Fredricksen, A.F.Schulte; Thin Solid Films 359 (2000) 154–159.

    Article  CAS  Google Scholar 

  34. I.O. Oladeji and L. Chow; Optimization of Chemical Bath Deposited Cadmium Sulfide Thin Films; J. Electrochem. Soc. Vol. 144, NO. 7 (1997).

  35. T.L.Chu, Shirley S. Chu, N. Schultz, C. Wang, and C.Q. Wu; “Solution Grown Cadmium Sulfide Films for Photovoltaic Devices”, J. Electrochem. Soc. Vol. 139, NO.9, (1992), pp. 2443–2446.

    Article  CAS  Google Scholar 

  36. A.Kylner, A. Rockett, and L.Stolt, “Oxygen in Solution Grown CdS Films for Thin Film Solar Cells, Solid State Phenomena Vols. 51–52 (1996) pp. 533–540.

    Article  CAS  Google Scholar 

  37. A.Kylner and Mikael Wirde; “A High Resolution X-Ray Photoelectron Spectroscopy Study of Carbon-Nitrogen Impurity in Chemical Bath Deposited CdS Thin Films”; Jpn. J. Appl. Phys. Vol.36 (1997) pp.2167–2175.

    Article  CAS  Google Scholar 

  38. A.Kylner, and E.Niemi, “Chemical Bath Deposited CdS films with Different impurity Concentrations – Film Characterization and Cu(In,Ga)Se2 Solar Cell Results”14th European photovoltaic Solar Energy Conference, Parcelona, Spain (1997) pp.1326–1329.

  39. E.S. Machlin, Materials Science in Microelectronics: The Relationships between Thin Film Processing and Structure (Giro Press, N.Y., 1995).

    Google Scholar 

  40. C.V. Thompson, J. Appl. Phys. 58, 763 (1985).

    Article  CAS  Google Scholar 

  41. C.V. Thompson, Annu. Ref. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  42. C.C. Wong, H.I. Smith, and C.V. Thompson, Appl. Phys. Lett. 48, 335 (1986).

    Article  CAS  Google Scholar 

  43. F.S. Hasoon, M.M. Al-Jassim, A.Swartzlander, P.Sheldon, A.A. Al-Douri, and A.A. Alnajjar, “The morphology of CdS Thin Films Deposited on SnO2-Coated Glass Substrates”, 26th IEEE PVSC, Anaheim, California (1997). NREL Report NO.CP-530-23580.

  44. J.D. Webb, D.H.Rose, D.W. Niles, A. Swartzlander, and M.M. Al-Jassim, Proceedings 26th IEEE PVSC. (1997). P. 399.

  45. PeakFit V4.11: Peak Separation and Analysis Software, Manufactured by SYSTAT Software Inc. For more information visit WWW. Site at http://www.systatsoftware.com; accessed on March 25th, 2016.

  46. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, NY, 2001).

    Google Scholar 

  47. Mathematica V4.2 software, Manufactured by Wolfram Research Inc. For more information visit www. Site at http://www.wolfram.com; accessed on March 25th, 2016.

  48. H.Kaneko, M.Hasunuma, A.Sawabe, T.Kawanoue, Y.Kohanawa, S. Komatsu, and M.Miyauchi, Proc. IEEE/IRPS, 194 (1990).

  49. X. L. Liu, Y.J. Zhu, V. Valdna, Mater. Lett. 63 (2009) 1085.

    Article  CAS  Google Scholar 

  50. R.D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”. Acta Cryst A32 (1976) pp. 751–767.

    Article  CAS  Google Scholar 

  51. M.M. Al-Jassim, R.G. Dhere, K.M. Jones, F.S. Hasoon, P.Sheldon, “The Morphology, Microstructure, and Luminescent Properties of CdS/CdTe Films”, Proceeding of 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria (1998).

  52. S.Jimenez-Sandoval, M.Melendez-Lira, and I.Hernandez-Calderon, “Crystal Structure and Energy Gap of CdTe Thin Films Grown by Radio Frequency Sputtering”, J.Appl. Phys. 72 (9), (1992), pp.4197–4202.

    Article  Google Scholar 

  53. M.E. Ozsan, D.R. Johnson, M.Sadeghi, D.Sivapathasundaram, G.Goodlet, M.J.Furlong, L.M.Peter, A.A. Shingleton, “Optical and Electrical Characterization of CdS Thin Films”, Journal of Materials Science: Materials in Electronics 7(1996) pp.119–125

    CAS  Google Scholar 

  54. L.I.Berger, Semiconductor Materials (CRC Press, Florida, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Thani, H.A., Al Yafeai, A.A. & Hasoon, F.S. Effect of Ammonium Acetate Concentration on the Structural and Optical Properties of CdS Thin Film Grown by Chemical Bath Deposition Technique. MRS Advances 1, 2603–2616 (2016). https://doi.org/10.1557/adv.2016.368

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.368

Navigation