Abstract
Spectroscopic imaging and statistical analysis of NIR-to-visible upconversion luminescence (UCL) from β-NaYF4:Yb3+:Er3+ upconverting nanoparticles (UCNPs) supported on a series of random Ag nanowire aggregates reveals a density dependent UCL enhancement. Statistical analysis of the spectrally resolved upconversion images shows a non-linear dependence of upconversion luminescence enhancement with Ag nanowire surface coverage. A maximum average enhancement of 5.8× was observed for 58% surface coverage. Based on the empirically determined trend with density, it is estimated that up to 20× upconversion luminescence enhancement can be achieved at 100% surface coverage, even at high excitation intensity. This projection is commensurate with the 20× enhancement ratio observed for select locations within the imaged micro-ensemble. Time-resolved emission of the UC luminescence from UCNPs on the Ag nanowire aggregates confirms the surface plasmon effects on the UCNPs kinetics. Such Ag nanowire aggregates show potential as a scalable and relatively simple metal-enhanced upconversion substrate.
Similar content being viewed by others
References
Auzel, F. Upconversion and Anti-Stokes Processes with F and D Ions in Solids. Chem. Rev. 2004, 104 (1), 139–173.
Meruga, J. M.; Cross, W. M.; Stanley May, P.; Luu, Q.; Crawford, G. a; Kellar, J. J. Security Printing of Covert Quick Response Codes Using Upconverting Nanoparticle Inks. Nanotechnology 2012, 23 (39), 395201.
Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy. Analyst 2010, 135 (8), 1839–1854.
Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc. 2007, 129 (15), 4526–4527.
Barnes, W. L. Topical Review Fluorescence near Interfaces : The Role of Photonic Mode Density. J. Mod. Opt. 1998, 45 (4), 661–669.
Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57 (July), 783.
Lakowicz, J. R. Radiative Decay Engineering: Biophysical and Biomedical Applications. Anal. Biochem. 2001, 298 (1), 1–24.
Lakowicz, J. R. Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmon Emission. Anal. Biochem. 2005, 337 (2), 171–194.
Wu, D. M.; Garc, A.; Salleo, A.; Dionne, J. A. Plasmon-Enhanced Upconversion. J Phys Chem Lett 2014, No. 5, 4020–4031.
Paudel, H. P.; Zhong, L.; Bayat, K.; Baroughi, M. F.; Smith, S.; Lin, C.; Jiang, C.; Berry, M. T.; May, P. S. Enhancement of Near-Infrared-to-Visible Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces. J. Phys. Chem. C 2011, 115 (39), 19028–19036.
Luu, Q. A.; Hor, A.; Fisher, J.; Anderson, R. B.; Liu, S.; Luk, T.; Paudel, H. P.; Baroughi, M. F.; May, P. S.; Smith, S. Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays. J. Phys. Chem. C 2014, 118, 3251–3257.
Fisher, J.; Zhao, B.; Lin, C.; Berry, M. T.; May, P. S.; Smith, S. Spectroscopic Imaging and Power Dependence of NIR to Visible Upconversion Luminescence from NaYF4:Yb3+,Er3+ Nanoparticles on Nano-Cavity Arrays. J. Phys. Chem. C 2015, 119 (44), 24976–24982.
Lin, C.; Berry, M. T.; Anderson, R.; Smith, S.; May, P. S. Highly Luminescent NIR-to-Visible Upconversion Thin Films and Monoliths Requiring No High-Temperature Treatment. Chem. Mater. 2009, 21 (14), 3406–3413.
Luu, Q. N.; Doorn, J. M.; Berry, M. T.; Jiang, C.; Lin, C.; May, P. S. Preparation and Optical Properties of Silver Nanowires and Silver-Nanowire Thin Films. J. Colloid Interface Sci. 2011, 356 (1), 151–158.
Rasband, W. ImageJ. U. S. Natl. Institutes Heal. Bethesda, Maryland, USA 2012, //imagej.nih.gov/ij/.
Podolskiy, V.; Sarychev, A.; Shalaev, V. Plasmon Modes and Negative Refraction in Metal Nanowire Composites. Opt. Express 2003, 11 (7), 735–745.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hor, A., Luu, Q.A.N., May, P.S. et al. Non-Linear Density Dependent Upconversion Luminescence Enhancement of β-NaYF4: Yb3+: Er3+ Nanoparticles on Random Ag Nanowire Aggregates. MRS Advances 1, 2677–2682 (2016). https://doi.org/10.1557/adv.2016.356
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2016.356