Skip to main content
Log in

Non-Linear Density Dependent Upconversion Luminescence Enhancement of β-NaYF4: Yb3+: Er3+ Nanoparticles on Random Ag Nanowire Aggregates

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Spectroscopic imaging and statistical analysis of NIR-to-visible upconversion luminescence (UCL) from β-NaYF4:Yb3+:Er3+ upconverting nanoparticles (UCNPs) supported on a series of random Ag nanowire aggregates reveals a density dependent UCL enhancement. Statistical analysis of the spectrally resolved upconversion images shows a non-linear dependence of upconversion luminescence enhancement with Ag nanowire surface coverage. A maximum average enhancement of 5.8× was observed for 58% surface coverage. Based on the empirically determined trend with density, it is estimated that up to 20× upconversion luminescence enhancement can be achieved at 100% surface coverage, even at high excitation intensity. This projection is commensurate with the 20× enhancement ratio observed for select locations within the imaged micro-ensemble. Time-resolved emission of the UC luminescence from UCNPs on the Ag nanowire aggregates confirms the surface plasmon effects on the UCNPs kinetics. Such Ag nanowire aggregates show potential as a scalable and relatively simple metal-enhanced upconversion substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auzel, F. Upconversion and Anti-Stokes Processes with F and D Ions in Solids. Chem. Rev. 2004, 104 (1), 139–173.

    Article  CAS  Google Scholar 

  2. Meruga, J. M.; Cross, W. M.; Stanley May, P.; Luu, Q.; Crawford, G. a; Kellar, J. J. Security Printing of Covert Quick Response Codes Using Upconverting Nanoparticle Inks. Nanotechnology 2012, 23 (39), 395201.

    Article  Google Scholar 

  3. Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy. Analyst 2010, 135 (8), 1839–1854.

    Article  CAS  Google Scholar 

  4. Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc. 2007, 129 (15), 4526–4527.

    Article  CAS  Google Scholar 

  5. Barnes, W. L. Topical Review Fluorescence near Interfaces : The Role of Photonic Mode Density. J. Mod. Opt. 1998, 45 (4), 661–669.

    Article  CAS  Google Scholar 

  6. Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57 (July), 783.

    Article  CAS  Google Scholar 

  7. Lakowicz, J. R. Radiative Decay Engineering: Biophysical and Biomedical Applications. Anal. Biochem. 2001, 298 (1), 1–24.

    Article  CAS  Google Scholar 

  8. Lakowicz, J. R. Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmon Emission. Anal. Biochem. 2005, 337 (2), 171–194.

    Article  CAS  Google Scholar 

  9. Wu, D. M.; Garc, A.; Salleo, A.; Dionne, J. A. Plasmon-Enhanced Upconversion. J Phys Chem Lett 2014, No. 5, 4020–4031.

  10. Paudel, H. P.; Zhong, L.; Bayat, K.; Baroughi, M. F.; Smith, S.; Lin, C.; Jiang, C.; Berry, M. T.; May, P. S. Enhancement of Near-Infrared-to-Visible Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces. J. Phys. Chem. C 2011, 115 (39), 19028–19036.

    Article  CAS  Google Scholar 

  11. Luu, Q. A.; Hor, A.; Fisher, J.; Anderson, R. B.; Liu, S.; Luk, T.; Paudel, H. P.; Baroughi, M. F.; May, P. S.; Smith, S. Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays. J. Phys. Chem. C 2014, 118, 3251–3257.

    Article  CAS  Google Scholar 

  12. Fisher, J.; Zhao, B.; Lin, C.; Berry, M. T.; May, P. S.; Smith, S. Spectroscopic Imaging and Power Dependence of NIR to Visible Upconversion Luminescence from NaYF4:Yb3+,Er3+ Nanoparticles on Nano-Cavity Arrays. J. Phys. Chem. C 2015, 119 (44), 24976–24982.

    Article  CAS  Google Scholar 

  13. Lin, C.; Berry, M. T.; Anderson, R.; Smith, S.; May, P. S. Highly Luminescent NIR-to-Visible Upconversion Thin Films and Monoliths Requiring No High-Temperature Treatment. Chem. Mater. 2009, 21 (14), 3406–3413.

    Article  CAS  Google Scholar 

  14. Luu, Q. N.; Doorn, J. M.; Berry, M. T.; Jiang, C.; Lin, C.; May, P. S. Preparation and Optical Properties of Silver Nanowires and Silver-Nanowire Thin Films. J. Colloid Interface Sci. 2011, 356 (1), 151–158.

    Article  CAS  Google Scholar 

  15. Rasband, W. ImageJ. U. S. Natl. Institutes Heal. Bethesda, Maryland, USA 2012, //imagej.nih.gov/ij/.

  16. Podolskiy, V.; Sarychev, A.; Shalaev, V. Plasmon Modes and Negative Refraction in Metal Nanowire Composites. Opt. Express 2003, 11 (7), 735–745.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hor, A., Luu, Q.A.N., May, P.S. et al. Non-Linear Density Dependent Upconversion Luminescence Enhancement of β-NaYF4: Yb3+: Er3+ Nanoparticles on Random Ag Nanowire Aggregates. MRS Advances 1, 2677–2682 (2016). https://doi.org/10.1557/adv.2016.356

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.356

Navigation