Abstract
Nanoparticles are used in chemical mechanical planarization for semiconductor manufacturing as well as in other precision manufacturing operations. Particles used in processing need to be removed from surfaces in order to enhance yields. Nanoparticles are difficult to remove from surfaces during cleaning due to the high van der Waals attractive forces between particles and surfaces relative to the low fluid drag forces that are used for typical removal methods. Ionic surfactant molecules can adsorb on particles and surfaces to create an electrostatic repulsion between particles and surfaces as well as provide a steric barrier to mitigate adsorption and adhesion. The effectiveness of the surfactant in enhancing particle removal is related to surfactant properties, and it can be correlated with and modeled relative to the critical micelle concentration of the surfactant. The general approach for modeling will be discussed, and the model will be compared with particle removal data.
Similar content being viewed by others
References
F. Zhang, A. Busnaina and G. Ahmadi, J. Electrochem. Soc. 146, 2665 (1999).
R. Vos, K. Xu, M. Lux, W. Fyen, R. Singh, Z. Chen, P. Mertens, Z. Hatcher and M. Heyns, Diffusion Defect Data Pt. B: Solid State Phenomena 76, 263 (2000).
J. S. Jeon and S. Raghavan, (Proc. 39th Annual Technical Meeting IEST, Inst. of Env. Sci.and Techn., Mount Prospect, IL, 1993) pp. 268–273.
M. A. Fury, Solid State Technol. 38(4), 47 (1995).
T. L. Meyers, M. A. Fury and W. C. Krusell, Solid State Technol. 38(10), 59 (1995).
M. A. Martinez, Solid State Technol. 37(5), 26 (1994).
W. J. Patrick, W. L. Guthrie, C. L. Standley and P. M. Schiable, J. Electrochem. Soc. 138, 1778 (1991).
A. Iqbal, S. R. Roy, G. B. Shinn, S. Raghavan, R. Shah and S. Peterman, Microcontamination 12, 45 (1994).
Y. Hayashi, M. Sakurai, T. Nakajima, K. Hayashi, S. Sakaki, S. Chicaki and T. Kunio, Jpn. J. Appl. Phys. 34, 1037 (1995).
F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, J. Electrochem. Soc. 138, 3460 (1991).
M. Itano, F. W. Kern, Jr., M. Miyashita and T. Ohmi, IEEE Trans. Semicond. Manuf. 6, 258 (1993).
D. J. Riley and R. G. Carbonell, J. Colloid Interface Sci. 158, 259 (1993).
S. R. Roy, I. Ali, G. Shinn, N. Furusawa, R. Shah, S. Peterman, K. Witt, S. Eastman and P. Kumar, J. Electrochem. Soc. 142, 216 (1995).
M. Itano, T. Kezuka, M. Ishii, T. Unemoto and M. Kubo, J. Electrochem. Soc. 142, 971 (1995).
Y. Ein-Eli, E. Abelev, E. Rabkin and D. Starovetsky, J. Electrochem. Soc. 150, C646 (2003).
T. C. Hu, S. Y. Chiu, B. T. Dai, M. S. Tsai, I. -C. Tung and M. S. Feng, Mater. Chem. Phys. 61, 169 (1999).
M. J. Rosen and Joy T. Kujappu, Surfactants and Interfacial Phenomena, 4th Edition, John Wiley and Sons, Inc., New York, NY, (2012).
P. C. Heimenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd Edition, Marcel Dekker, Inc., New York, NY (1997).
M. L. Free, W. Wang and D. Y. Ryu, Corrosion 60, 837 (2004).
M. L. Free, Corrosion 58, 1025 (2002).
J. F. Zemaitis, D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics, AIChE, New York (1986).
R. G. Horn, J. Am. Ceram. Soc. 73, 1117 (1990).
V. V. Yaminsky, B. W. Ninham, H. K. Christenson and R. M. Pashley, Langmuir 12, 1936 (1996).
W. A. Ducker, Z. Xu, D. R. Clarke and J. N. Israelachvili, J. Am. Ceram. Soc. 77, 437 (1994).
J. N. Israelachvili, Intermolecular and Surface Forces, 2nd edition, Academic Press, San Diego, CA (1992).
M. L. Free and D. O. Shah, “The Role of Cetyl Pyridinium Chloride in Reducing Adhesion Forces Between Alumina Particles and Quartz Surfaces,” in: Particles on Surfaces 5 & 6: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 1999) pp. 95–106.
A. M. Freitas and M. M. Sharma, Langmuir 15, 2466 (1999).
R. Vos, K. Xu, G. Vereecke, F. Holsteyns, W. Fyen, L. Wang, J. Lauerhaas, M. Hoffman, T. Hackett, P. Mertens and M. Heyns, “Advanced Wet Cleaning of Sub-micrometer Sized Particles,” in: Particles on Surfaces 8: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 2003) pp. 255–270.
M. L. Free, “Prediction of Particle Removal Using Surfactants,” in: Particles on Surfaces 9: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 2006) pp. 317–328.
M. L. Free and D. O. Shah, “Enhancement of Particle Removal and Modification of Interfacial Phenomena Using Surfactants,” in: Particles on Surfaces 7: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 2002) pp. 405–418.
M. L. Free and D. O. Shah, Micro 16, 29 (May 1998).
C. E. McNamee, Y. Tsujii, H. Ohshima and M. Matsumoto, Langmuir 20, 1953 (2004).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Free, M.L. Enhanced Nanoparticle Removal Using Surfactants. MRS Advances 1, 2213–2224 (2016). https://doi.org/10.1557/adv.2016.294
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2016.294