Skip to main content
Log in

Enhanced Nanoparticle Removal Using Surfactants

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nanoparticles are used in chemical mechanical planarization for semiconductor manufacturing as well as in other precision manufacturing operations. Particles used in processing need to be removed from surfaces in order to enhance yields. Nanoparticles are difficult to remove from surfaces during cleaning due to the high van der Waals attractive forces between particles and surfaces relative to the low fluid drag forces that are used for typical removal methods. Ionic surfactant molecules can adsorb on particles and surfaces to create an electrostatic repulsion between particles and surfaces as well as provide a steric barrier to mitigate adsorption and adhesion. The effectiveness of the surfactant in enhancing particle removal is related to surfactant properties, and it can be correlated with and modeled relative to the critical micelle concentration of the surfactant. The general approach for modeling will be discussed, and the model will be compared with particle removal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zhang, A. Busnaina and G. Ahmadi, J. Electrochem. Soc. 146, 2665 (1999).

    Article  CAS  Google Scholar 

  2. R. Vos, K. Xu, M. Lux, W. Fyen, R. Singh, Z. Chen, P. Mertens, Z. Hatcher and M. Heyns, Diffusion Defect Data Pt. B: Solid State Phenomena 76, 263 (2000).

    Google Scholar 

  3. J. S. Jeon and S. Raghavan, (Proc. 39th Annual Technical Meeting IEST, Inst. of Env. Sci.and Techn., Mount Prospect, IL, 1993) pp. 268–273.

  4. M. A. Fury, Solid State Technol. 38(4), 47 (1995).

    Google Scholar 

  5. T. L. Meyers, M. A. Fury and W. C. Krusell, Solid State Technol. 38(10), 59 (1995).

    Google Scholar 

  6. M. A. Martinez, Solid State Technol. 37(5), 26 (1994).

    Google Scholar 

  7. W. J. Patrick, W. L. Guthrie, C. L. Standley and P. M. Schiable, J. Electrochem. Soc. 138, 1778 (1991).

    Article  CAS  Google Scholar 

  8. A. Iqbal, S. R. Roy, G. B. Shinn, S. Raghavan, R. Shah and S. Peterman, Microcontamination 12, 45 (1994).

    Google Scholar 

  9. Y. Hayashi, M. Sakurai, T. Nakajima, K. Hayashi, S. Sakaki, S. Chicaki and T. Kunio, Jpn. J. Appl. Phys. 34, 1037 (1995).

    Article  CAS  Google Scholar 

  10. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, J. Electrochem. Soc. 138, 3460 (1991).

    Article  CAS  Google Scholar 

  11. M. Itano, F. W. Kern, Jr., M. Miyashita and T. Ohmi, IEEE Trans. Semicond. Manuf. 6, 258 (1993).

    Article  Google Scholar 

  12. D. J. Riley and R. G. Carbonell, J. Colloid Interface Sci. 158, 259 (1993).

    Article  CAS  Google Scholar 

  13. S. R. Roy, I. Ali, G. Shinn, N. Furusawa, R. Shah, S. Peterman, K. Witt, S. Eastman and P. Kumar, J. Electrochem. Soc. 142, 216 (1995).

    Article  CAS  Google Scholar 

  14. M. Itano, T. Kezuka, M. Ishii, T. Unemoto and M. Kubo, J. Electrochem. Soc. 142, 971 (1995).

    Article  CAS  Google Scholar 

  15. Y. Ein-Eli, E. Abelev, E. Rabkin and D. Starovetsky, J. Electrochem. Soc. 150, C646 (2003).

    Article  CAS  Google Scholar 

  16. T. C. Hu, S. Y. Chiu, B. T. Dai, M. S. Tsai, I. -C. Tung and M. S. Feng, Mater. Chem. Phys. 61, 169 (1999).

    Article  CAS  Google Scholar 

  17. M. J. Rosen and Joy T. Kujappu, Surfactants and Interfacial Phenomena, 4th Edition, John Wiley and Sons, Inc., New York, NY, (2012).

    Book  Google Scholar 

  18. P. C. Heimenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd Edition, Marcel Dekker, Inc., New York, NY (1997).

    Google Scholar 

  19. M. L. Free, W. Wang and D. Y. Ryu, Corrosion 60, 837 (2004).

    Article  CAS  Google Scholar 

  20. M. L. Free, Corrosion 58, 1025 (2002).

    Article  CAS  Google Scholar 

  21. J. F. Zemaitis, D. M. Clark, M. Rafal, and N. C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics, AIChE, New York (1986).

    Book  Google Scholar 

  22. R. G. Horn, J. Am. Ceram. Soc. 73, 1117 (1990).

    Article  CAS  Google Scholar 

  23. V. V. Yaminsky, B. W. Ninham, H. K. Christenson and R. M. Pashley, Langmuir 12, 1936 (1996).

    Article  CAS  Google Scholar 

  24. W. A. Ducker, Z. Xu, D. R. Clarke and J. N. Israelachvili, J. Am. Ceram. Soc. 77, 437 (1994).

    Article  CAS  Google Scholar 

  25. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd edition, Academic Press, San Diego, CA (1992).

    Google Scholar 

  26. M. L. Free and D. O. Shah, “The Role of Cetyl Pyridinium Chloride in Reducing Adhesion Forces Between Alumina Particles and Quartz Surfaces,” in: Particles on Surfaces 5 & 6: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 1999) pp. 95–106.

    Google Scholar 

  27. A. M. Freitas and M. M. Sharma, Langmuir 15, 2466 (1999).

    Article  CAS  Google Scholar 

  28. R. Vos, K. Xu, G. Vereecke, F. Holsteyns, W. Fyen, L. Wang, J. Lauerhaas, M. Hoffman, T. Hackett, P. Mertens and M. Heyns, “Advanced Wet Cleaning of Sub-micrometer Sized Particles,” in: Particles on Surfaces 8: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 2003) pp. 255–270.

    Google Scholar 

  29. M. L. Free, “Prediction of Particle Removal Using Surfactants,” in: Particles on Surfaces 9: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 2006) pp. 317–328.

    Google Scholar 

  30. M. L. Free and D. O. Shah, “Enhancement of Particle Removal and Modification of Interfacial Phenomena Using Surfactants,” in: Particles on Surfaces 7: Detection, Adhesion, and Removal, ed. K. L. Mittal, (CRC Press, Boca Raton, FL, 2002) pp. 405–418.

    Google Scholar 

  31. M. L. Free and D. O. Shah, Micro 16, 29 (May 1998).

    Google Scholar 

  32. C. E. McNamee, Y. Tsujii, H. Ohshima and M. Matsumoto, Langmuir 20, 1953 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Free, M.L. Enhanced Nanoparticle Removal Using Surfactants. MRS Advances 1, 2213–2224 (2016). https://doi.org/10.1557/adv.2016.294

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.294

Navigation