Skip to main content
Log in

Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Microindentation is performed on hot isostatic pressed (HIP) Mg-Al (AM40) alloy samples produced by high-pressure die cast (HPDC) process for the purpose of quantifying the mechanical properties of the α-Mg grains. The process of obtaining elastic modulus and hardness from indentation load-depth curves is well established in the literature. A new inverse method is developed to extract plastic properties in this study. The method utilizes empirical yield strength-hardness relationship reported in the literature together with finite element modeling of the individual indentation. Due to the shallow depth of the indentation, indentation size effect (ISE) is taken into account when determining plastic properties. The stress versus strain behavior is determined for a series of indents. The resulting average values and standard deviations are obtained for future use as input distributions for microstructure-based property prediction of AM40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kubota, M. Mabuchi and K. Higashi, J. Mater. Sci. 34, 2255–2262 (1999).

    Article  CAS  Google Scholar 

  2. M. K. Kulekci, Int J Adv Manuf Tech 39, 851–865 (2008).

    Article  Google Scholar 

  3. B. Mordike and T. Ebert, Mater. Sci. Eng., A 302, 37–45 (2001).

    Article  Google Scholar 

  4. E. I. Barker, K. S. Choi, X. Sun, E. Deda, J. Allison, M. Li, J. Forsmark, J. Zindel and L. Godlewski, Comput. Mater. Sci. 92, 353–361 (2014).

    Article  CAS  Google Scholar 

  5. K. S. Choi, A. Soulami, W. N. Liu, X. Sun and M. A. Khaleel, Comput. Mater. Sci. 50, 720–730 (2010).

    Article  CAS  Google Scholar 

  6. X. Sun, K. S. Choi, W. N. Liu and M. A. Khaleel, Int. J. Plast. 25, 1888–1909 (2009).

    Article  CAS  Google Scholar 

  7. J. J. Williams, J. L. Walters, M. Y. Wang, N. Chawla and A. Rohatgi, JOM 65, 226–233 (2013).

    Article  Google Scholar 

  8. M. Pozuelo, Y. W. Chang and J. M. Yang, Mater. Lett. 108, 320–323 (2013).

    Article  CAS  Google Scholar 

  9. K. S. Ng and A. H. W. Ngan, Philos. Mag. 89, 3013–3026 (2009).

    Article  CAS  Google Scholar 

  10. J. Bočan, J. Maňák and A. Jäger, Mater. Sci. Eng., A 644, 121–128(2015).

    Article  Google Scholar 

  11. R. Sánchez-Martín, M. T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca and J. M. Molina-Aldareguia, Acta Mater. 71, 283–292 (2014).

    Article  Google Scholar 

  12. J. L. Stewart, L. Jiang, J. J. Williams and N. Chawla, Mater. Sci. Eng., A 534, 220–227 (2012).

    Article  CAS  Google Scholar 

  13. C. Zambaldi, C. Zehnder and D. Raabe, Acta Mater. 91, 267–288 (2015).

    Article  CAS  Google Scholar 

  14. M. Mostafavi, D. M. Collins, B. Cai, R. Bradley, R. C. Atwood, C. Reinhard, X. Jiang, M. Galano, P. D. Lee and T. J. Marrow, Acta Mater. 82, 468–482 (2015).

    Article  CAS  Google Scholar 

  15. (ASTM International, Philadelphia, 2007).

  16. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  17. M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh and S. Suresh, Acta Mater. 49, 3899–3918(2001).

    Article  CAS  Google Scholar 

  18. N. Ogasawara, N. Chiba and X. Chen, J. Mater. Res. 20, 2225–2234 (2005).

    Article  CAS  Google Scholar 

  19. J. L. Bucaille, S. Stauss, E. Felder and J. Michler, Acta Mater. 51, 1663–1678 (2003).

    Article  CAS  Google Scholar 

  20. Z.-H. Xu and D. Rowcliffe, Philos. Mag. A 82, 1893–1901 (2002).

    Article  CAS  Google Scholar 

  21. T. A. Venkatesh, K. J. Van Vliet, A. E. Giannakopoulos and S. Suresh, Scr. Mater. 42, 833–839 (2000).

    Article  CAS  Google Scholar 

  22. J. J. Kang, A. A. Becker and W. Sun, Int. J. Mech. Sci. 62, 34–46 (2012).

    Article  Google Scholar 

  23. M. K. Khan, S. V. Hainsworth, M. E. Fitzpatrick and L. Edwards, Comput. Mater. Sci. 49, 751–760(2010).

    Article  CAS  Google Scholar 

  24. I. Peyrot, P.-O. Bouchard, R. Ghisleni and J. Michler, J. Mater. Res. 24, 936–947 (2009).

    Article  CAS  Google Scholar 

  25. G. Cheng, X. Hu, K. S. Choi and X. Sun, submitted (2015).

  26. Z. H. Shan and A. M. Gokhale, Mater. Sci. Eng. A 361, 267–274 (2003).

    Article  Google Scholar 

  27. H. V. Atkinson and S. Davies, Metall. Mater. Trans. A 31, 2981–3000 (2000).

    Article  Google Scholar 

  28. A. C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd Ed. (Springer US, New York, 2007).

    Book  Google Scholar 

  29. H. Ghassemi-Armaki, R. Maaß, S. P. Bhat, S. Sriram, J. R. Greer and K. S. Kumar, Acta Mater. 62, 197–211 (2014).

    Article  CAS  Google Scholar 

  30. W. D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411–425 (1998).

    Article  CAS  Google Scholar 

  31. P. M. Rice and R. E. Stoller, presented at the MRS Proceedings, 2000 (unpublished).

  32. N. Sakharova, J. Fernandes, J. Antunes and M. Oliveira, Int. J. Solids Struct. 46, 1095–1104(2009).

    Article  Google Scholar 

  33. L. Qian, M. Li, Z. Zhou, H. Yang and X. Shi, Surf. Coat. Technol. 195, 264–271 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Barker, E.I., Stephens, E.V. et al. Quantifying Grain Level Stress-Strain Behavior for AM40 via Instrumented Microindentation. MRS Advances 1, 761–772 (2016). https://doi.org/10.1557/adv.2016.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.25

Navigation