Skip to main content
Log in

Nanodroplets Impacting on Graphene

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The unique and remarkable properties of graphene can be exploited as the basis to a wide range of applications. However, in spite of years of investigations there are some important graphene properties that are not still fully understood, as for example, its wettability. There are controversial reported results whether graphene is really hydrophobic or hydrophilic. In order to address this problem we have carried out classical molecular dynamics simulations of water nanodroplets shot against graphene surface. Our results show that the contact angle values between the nanodroplets and graphene surfaces depend on the initial droplet velocity value and these angles can change from 86° (hydrophobic) to 35° (hydrophilic). Our preliminary results indicate that the graphene wettability can be dependent on spreading liquid dynamics and which can explain some of the apparent inconsistencies reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Torrisi and J. N. Coleman, Nature Nanotech. 9, 738 (2014).

    Article  CAS  Google Scholar 

  2. J. Liu, Nature Nanotech. 9, 739 (2014).

    Article  CAS  Google Scholar 

  3. C. N. R. Rao, K. Gopalakrishnan, and U. Maitra, ACS Appl. Mater. Interfaces 7, 7809 (2015).

    Article  CAS  Google Scholar 

  4. J.-H. Ahn and B. H. Hong, Nature Nanotech. 9, 737 (2014).

    Article  Google Scholar 

  5. M. K. Blees, A. W. Barnard, P. a. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. a. Muller, and P. L. McEuen, Nature 524, 204 (2015).

    Article  CAS  Google Scholar 

  6. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Nature 506, 349 (2014).

    Article  CAS  Google Scholar 

  7. J.-H. Lee, P. E. Loya, J. Lou, and E. L. Thomas, Science 346, 1092 (2014).

    Article  CAS  Google Scholar 

  8. G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, Science 349, 1083 (2015).

    Article  CAS  Google Scholar 

  9. F. Meng, C. Chen, and J. Song, J. Phys. Chem. Lett. 6, 4038 (2015).

    Article  CAS  Google Scholar 

  10. C. Herrera, G. García, M. Atilhan, and S. Aparicio, J. Phys. Chem. C 119, 24529 (2015).

    Article  CAS  Google Scholar 

  11. X. Li, H. Ren, W. Wu, H. Li, L. Wang, Y. He, J. Wang, and Y. Zhou, Sci. Rep. 5, 15190 (2015).

    Article  CAS  Google Scholar 

  12. J. Bong, T. Lim, K. Seo, C.-A. Kwon, J. H. Park, S. K. Kwak, and S. Ju, Sci. Rep. 5, 14321 (2015).

    Article  CAS  Google Scholar 

  13. A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D’Urso, H. Liu, and L. Li, Langmuir 30, 8598 (2014).

    Article  CAS  Google Scholar 

  14. Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade, L. Li, and H. Liu, Nature Mater. 12, 925 (2013).

    Article  CAS  Google Scholar 

  15. K. B. Ricardo, A. Sendecki, and H. Liu, Chem. Commun. 50, 2751 (2014).

    Article  CAS  Google Scholar 

  16. J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, and N. a. Koratkar, Nature Mater. 11, 217 (2012).

    Article  CAS  Google Scholar 

  17. A. Kozbial, Z. Li, J. Sun, X. Gong, F. Zhou, Y. Wang, H. Xu, H. Liu, and L. Li, Carbon 74, 218 (2014).

    Article  CAS  Google Scholar 

  18. T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, F. Noca, and P. Koumoutsakos, Nano Letters 1, 697 (2001).

    Article  CAS  Google Scholar 

  19. S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Langmuir 25, 11078 (2009).

    Article  CAS  Google Scholar 

  20. Editorial, Nature Mater. 12, 865 (2013).

    Article  Google Scholar 

  21. S. Plimpton, J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/.

    Article  CAS  Google Scholar 

  22. E. L. Pollock and J. Glosli, Comp. Phys. Commun. 95, 93 (1996).

    Article  CAS  Google Scholar 

  23. S. A. Aksyonov and P. Williams, Rapid Commun. in Mass Spectrometry 15, 2001 (2001).

    Article  CAS  Google Scholar 

  24. J. Koplik, Phys. of Fluids 27, 082001 (2015).

    Article  Google Scholar 

  25. X. H. Li, X. X. Zhang, and M. Chen, Phys. of Fluids 27, 052007 (2015).

    Article  Google Scholar 

  26. S. N. Sun and H. M. Urbassek, Phys. Rev. E 84, 056315 (2011).

    Article  Google Scholar 

  27. S. N. Sun and H. M. Urbassek, Soft Matter 8, 4708 (2012).

    Article  Google Scholar 

  28. J. Koplik and R. Zhang, Phys. of Fluids 25, 022003 (2013).

    Article  Google Scholar 

  29. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  30. R. L. Jaffe, P. Gonnet, T. Werder, J. H. Walther, and P. Koumoutsakos, Mol. Simul. 30, 205 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaques, Y.M., Brunetto, G. & Galvão, D.S. Nanodroplets Impacting on Graphene. MRS Advances 1, 675–680 (2016). https://doi.org/10.1557/adv.2016.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.221

Navigation