Skip to main content
Log in

Scanning Tunneling Microscopy of Atomic Scale Phonon Standing Waves in Quasi-freestanding WSe2 Monolayers

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Using scanning tunneling microscopy (STM) we observed atomic scale interference patterns on quasi-freestanding WSe2 islands grown on top of graphene. The bias-independent double atomic size periodicity of these patterns and the sharp Brillouin zone edge revealed by 2D STM Fourier analysis indicate formation of optical phonon standing waves due to scattering on intercalating defects supporting these islands. Standing wave patterns of both synchronized and non-synchronized optical phonons, corresponding to resonant and non-resonant phonon scattering regimes, were experimentally observed. We also found the symmetry breaking effect for individual phonon wave packets, one of the unique features distinguishing phonon standing waves. We show that vibrational and electronic anharmonicities are responsible for STM detection of these patterns. A significant contribution to the interference contrast arises from quantum zero-point oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fasolino, J. H. Los, and M. I. Katsnelson, Nature Materials 6, 858 (2007)

    Article  CAS  Google Scholar 

  2. J. Fransson and A. V. Balatsky, Phys. Rev. B 75, 195337 (2007)

    Article  Google Scholar 

  3. I. Altfeder, A. A. Voevodin, and A. K. Roy, Phys. Rev. Lett. 105, 166101 (2010)

    Article  Google Scholar 

  4. A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544 (1998)

    Article  CAS  Google Scholar 

  5. J. F. Rodriguez-Nieva, R. Saito, S. D. Costa, and M. S. Dresselhaus, Phys. Rev. B 85, 245406

  6. M. V. Klein, Phys. Rev. 131, 1500 (1963)

    Article  Google Scholar 

  7. G. Manzano, F. Galve, G. L. Giorgi, E. Hernández-García, and R. Zambrini, Sci. Rep. 3, 1439 (2013)

    Article  CAS  Google Scholar 

  8. Yu. N. Gornostyrev, M. I. Katsnelson, A. P. Platonov, A. V. Trefilov, JETP 80, 525 (1995)

    Google Scholar 

  9. O. Rösch, O. Gunnarsson, Phys. Rev. Lett. 92, 146403 (2004)

    Article  Google Scholar 

  10. M. Boukhicha, M. Calandra, M. A. Measson, O. Lancry, and A. Shukla, Phys. Rev. B 87, 195316 (2013)

    Article  Google Scholar 

  11. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu and F. M. Peeters, Phys. Rev. B 87, 165409 (2013)

    Article  Google Scholar 

  12. S. M. Eichfeld, C. M. Eichfeld, Y. C. Lin, L. Hossain, and J. A. Robinson, APL Mat. 2, 092508 (2014)

    Article  Google Scholar 

  13. S. M. Eichfeld et al., ACS Nano 9, 2080 (2015)

    Article  CAS  Google Scholar 

  14. C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih, Nano Lett. 14, 2443 (2014)

    Article  CAS  Google Scholar 

  15. L. Chen, B. Liu, A. N. Abbas, Y. Ma, X. Fang, Y. Liu, and C. Zhou, ACS Nano 8, 11543 (2014)

    Article  CAS  Google Scholar 

  16. P. Tonndorf et al., Opt. Express 21, 4908 (2013)

    Article  CAS  Google Scholar 

  17. J. A. Wilson, A. D. Yoffe, Adv. Phys. 18, 193 (1969)

    Article  CAS  Google Scholar 

  18. J. H. Crawford and L. M. Slifkin, Point Defects in Solids: Volume 2, Semiconductors and Molecular Crystals, Plenum Press, New York, 1975

    Book  Google Scholar 

  19. Q. Yue, Z. Shao, S. Chang and J. Li, Nanoscale Research Letters 8, 425( 2013)

    Article  Google Scholar 

  20. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature 363, 524 (1993)

    Article  CAS  Google Scholar 

  21. M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, and F. Besenbacher, Phys. Rev. Lett. 87, 196803 (2001)

    Article  CAS  Google Scholar 

  22. M. M. Ugeda et al., Nature Materials 13, 1091 (2014)

    Article  CAS  Google Scholar 

  23. L. Zhang, K. Liu, A. B. Wong, J. Kim, X. Hong, C. Liu, T. Cao, S. G. Louie, F. Wang, and P. Yang, Nano Lett. 14, 6418 (2014)

    Article  CAS  Google Scholar 

  24. C. H. Chang, X. Fan, S. H. Lin, and J. L. Kuo, Phys. Rev. B 88, 195420 (2013)

    Article  Google Scholar 

  25. L. Chaos-Cador and G. Garcıa-Calderon, J. Phys. A: Math. Theor. 43, 035301 (2010)

    Article  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, London, 1958

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Altfeder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altfeder, I., Eichfeld, S.M., Naguy, R.D. et al. Scanning Tunneling Microscopy of Atomic Scale Phonon Standing Waves in Quasi-freestanding WSe2 Monolayers. MRS Advances 1, 1645–1650 (2016). https://doi.org/10.1557/adv.2016.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.170

Navigation