Skip to main content
Log in

Amino-functionalized Fluorescent Carbon Dots for Chemical Sensing

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Quantum dots have been applied in sensing with success, but their use in environmental applications has been questioned due to their heavy metal content. Carbon dots are fluorescent nanoparticles that offer a promising alternative to quantum dots for sensing, due to their low cost, benign fabrication process and negligible environmental impact. Fluorescence sensors are specially suited for detection of nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT), since they can quench the emission of excited species. When combined to Molecularly Imprinted Polymers (MIPs), the sensors become specific to the imprinted target molecules. Amino-functionalized carbon dots (CDs) with high photoluminescence were fabricated. The CDs were characterized with respect to their surface charge, surface chemistry, particle size distribution, and photoluminescence properties (PL). A molecularly imprinted polymer with template of DNT was combined with fluorescent carbon dots via a simple covalent reaction. The ability of aqueous DNT to quench amino CDs fluorescence was tested for concentrations in the range of 1mM to 50 mM. It can be concluded that the amino carbon dots can be used in fluorescent-labeled MIP systems and that they provide a feasible method for the detection of DNT, and potentially other nitroaromatic compounds, in environmental water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.V. Goodpaster, V.L. McGuffin, Analytical Chemistry 73, 2004–2011 (2001).

    Article  CAS  Google Scholar 

  2. Y. Salinas, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, A.M. Costero, M. Parra, S. Gil, Chemical Society Reviews 41, 1261–1296 (2012).

    Article  CAS  Google Scholar 

  3. R.C. Stringer, S. Gangopadhyay, S.A. Grant, Analytical Chemistry 82, 4015–4019 (2010).

    Article  CAS  Google Scholar 

  4. K. Zhang, H. Zhou, Q. Mei, S. Wang, G. Guan, R. Liu, J. Zhang, Z. Zhang, Journal of the American Chemical Society 133, 8424–8427 (2011).

    Article  CAS  Google Scholar 

  5. A. McCluskey, C.I. Holdsworth, M.C. Bowyer, Organic & Biomolecular Chemistry 5, 3233–3244 (2007).

    Article  CAS  Google Scholar 

  6. G. Wulff, Chemical Reviews 102, 1–28 (2001).

    Article  Google Scholar 

  7. S.N. Baker, G.A. Baker, Angewandte Chemie International Edition 49, 6726–6744 (2010).

    Article  CAS  Google Scholar 

  8. Y. Wang, P. Anilkumar, L. Cao, J.-H. Liu, P. Luo, K. Tackett II, S. Sahu, P. Wang, X. Wang, Y.-P. Sun, Experimental Biology and Medicine 236, 1231–1238 (2011).

    Article  CAS  Google Scholar 

  9. J. Shen, Y. Zhu, X. Yang, C. Li, Chemical Communications 48, 3686–3699 (2012).

    Article  CAS  Google Scholar 

  10. X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Journal of Materials Chemistry 21, 2445–2450 (2011).

    Article  CAS  Google Scholar 

  11. P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, H.-T. Chang, Green Chemistry 14, 917–920 (2012).

    Article  CAS  Google Scholar 

  12. W. Stöber, A. Fink, E. Bohn, Journal of colloid and interface science 26, 62–69 (1968).

    Article  Google Scholar 

  13. P. Jiang, J. Bertone, K. Hwang, V. Colvin, Chemistry of Materials 11, 2132–2140 (1999).

    Article  CAS  Google Scholar 

  14. M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Advanced Materials 26, 3554–3560 (2014).

    Article  CAS  Google Scholar 

  15. K. Hola, A.B. Bourlinos, O. Kozak, K. Berka, K.M. Siskova, M. Havrdova, J. Tucek, K. Safarova, M. Otyepka, E.P. Giannelis, R. Zboril, Carbon 70, 279–286 (2014).

    Article  CAS  Google Scholar 

  16. P.C. Hsu, H.T. Chang, Chem Commun (Camb) 48, 3984–3986 (2012).

    Article  CAS  Google Scholar 

  17. W. Kwon, S. Do, J.H. Kim, M. Seok Jeong, S.W. Rhee, Sci Rep 5, 12604 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Zambrana, M. & Fidalgo, M. Amino-functionalized Fluorescent Carbon Dots for Chemical Sensing. MRS Advances 1, 1365–1370 (2016). https://doi.org/10.1557/adv.2016.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.169

Navigation