Skip to main content
Log in

Fabrication of 3D Graphene and 3D Graphene Oxide Devices for Sensing VOCs

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Detection of volatile organic compounds (VOCs) emitted from cancerous tumor cells in exhaled human breath allows for early diagnosis of various types of cancers. 3D graphene with a large surface area is considered a suitable material for creating novel sensitive VOCs sensors. In this study, 3D graphene and 3D graphene oxide were synthesized from graphene oxide suspension, hydroquinone and formaldehyde by employing polymerization and reduction. The capability of VOC gas sensing was evaluated by measuring the electrical current response in flowing N2 gas over a range of concentrations of acetone or 1-butanol at room temperature. It was observed that the device current correlated well with the VOC concentration. The adsorption of acetone decreased the current, but the adsorption of 1-butanol increased the current during sensing. 3D graphene oxide device was more sensitive than 3D graphene device because of the high concentration of oxygen-containing functional groups on the surface. These results indicated that 3D graphene and 3D graphene oxide may be the suitable materials for VOCs sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature, 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  2. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, Sensors and Actuators B218, 160–183 (2015).

    Article  Google Scholar 

  3. G.H. Lu, L.E. Ocola, J.H. Chen, Nanotechnology, 20, 445502–4455011 (2009).

    Article  Google Scholar 

  4. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater., 6, 652–655 (2007).

    Article  CAS  Google Scholar 

  5. S. Chen, W. Cai, D. Chen, Y. Ren, X. Li, Y. Zhu, J. Kang, R.S. Ruoff., New J. Phys., 12, 125011 (2010).

    Article  Google Scholar 

  6. Y. Ito, Y. Tanabe, H.J. Qiu, K. Sugawara, S. Heguri, N.H. Tu, K. KimHuynh, T. Fujita, T. Takahashi, K. Tanigaki, M. Chen., Angew. Chem. Int. Ed., 53, 4822–4826 (2014).

    Article  CAS  Google Scholar 

  7. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater., 10, 424–428 (2011).

    Article  CAS  Google Scholar 

  8. Z.M. Wang, K. Hoshinoo, M. Xue, H. Kanohc, K. Ooi, Chem. Commun., 1696–1697 (2002).

  9. M.A. Worsley, T.Y. Olson, J.R.I. Lee, T.M. Willey, M.H. Nielsen, S.K. Roberts, P.J. Pauzauskie, J. Biener, J.H. Satcher, T.F. Baumann., J. Phy. Chem. Lett., 2, 921–925 (2011).

    Article  CAS  Google Scholar 

  10. V.H. Luan, J.S. Chung, E.J. Kim, S.H. Hur, Chem. Eng. J., 246, 64–70 (2014).

    Article  CAS  Google Scholar 

  11. H. Wang, K. Sun, F. Tao, D.J. Stacchiola, Y.H. Hu. Angew. Chem. Int. Ed., 52, 9210–9214 (2013).

    Article  CAS  Google Scholar 

  12. Y.J. Yun, W.G. Hong, N.J. Choi, H.J. Park, S.E. Moon, B.H. Kim, K.B. Song, Y. Jund, H.K. Lee., Nanoscale, 1, 6511–6514 (2014).

    Article  Google Scholar 

  13. X. Liua, J. Sunb, X. Zhang., Sensors Actuators B Chem., 211, 220–226 (2015).

    Article  Google Scholar 

  14. J. Huang, S. Kumar, N. Abbassi-Ghadi, P. Španě, D. Smith, G.B. Hanna, Anal. Chem., 85, 3409–3416 (2013).

    Article  CAS  Google Scholar 

  15. G. Songa, T. Qina, H. Liua, G.B. Xub, Y.Y. Pana, F.X. Xionga, K.S. Gua, G.P. Suna, Z.D. Chen, Lung Cancer, 67, 227–231 (2010).

    Article  Google Scholar 

  16. C. Pei, H. Sun, Z. Zhu, W. Liang, J. An, Q. Zhang, A. Li., RSC Adv., 4, 14042 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuyama, S., Sugiyama, T., Ikoma, T. et al. Fabrication of 3D Graphene and 3D Graphene Oxide Devices for Sensing VOCs. MRS Advances 1, 1359–1364 (2016). https://doi.org/10.1557/adv.2016.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.151

Navigation