Skip to main content

Advertisement

Log in

Artificial Photosynthesis Device Development for CO2 Photoelectrochemical Conversion.

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Development of a photoelectrochemical conversion device, operated at room temperature and ambient pressure with only ultraviolet radiation as an energy source is presented. We report a nanocomposite platform that combines a photocatalyst and an electrocatalyst capable of reducing gaseous Carbon Dioxide, without using external electricity. The composite catalyst produces Methane from Carbon Dioxide and atmospheric water vapor at an initial high conversion rate of 2596 μL of CH4 per gram of catalyst per hour, which is amongst the highest reported. Our new approach offers a versatile solution to reduce the rising level of atmospheric Carbon Dioxide where a source of light is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Marland, T. A. Boden, and R. J. Andres, Global, Regional, and National Fossil Fuel CO2 Emissions (2003).

  2. S. Solomon, G.-K. Plattner, R. Knutti, and P. Friedlingstein, Pnas 106, 1704 (2009).

    Article  CAS  Google Scholar 

  3. L. Cao, G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, Proc. Natl. Acad. Sci. U.S.a. 107, 9513 (2010).

    Article  CAS  Google Scholar 

  4. X. X. and and J. A. Moulijn, Energy Fuels 10, 305 (1996).

    Article  Google Scholar 

  5. W. E. Balch, S. Schoberth, R. S. Tanner, and R. S. Wolfe, Int. J. Syst. Evol. Microbiol. 27, 355 (1977).

    CAS  Google Scholar 

  6. R. Conrad and M. Klose, FEMS Microbiol. Ecol. 30, 147 (1999).

    Article  CAS  Google Scholar 

  7. M. Gattrell, N. Gupta, A. Co, and A. Co, J. Electroanal. Chem. 594, 1 (2006).

    Article  CAS  Google Scholar 

  8. A. Fujishima and K. HONDA, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  9. M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma, and L. Oniciu, J. Appl. Electrochem. 27, 875 (1997).

    Article  CAS  Google Scholar 

  10. C. Liu, J. J. Gallagher, K. K. Sakimoto, E. M. Nichols, C. J. Chang, M. C. Y. Chang, and P. Yang, Nano Lett. 15, 3634 (2015).

    Article  CAS  Google Scholar 

  11. C. Liu, J. Tang, H. M. Chen, Bin Liu, and P. Yang, Nano Lett. 13, 2989 (2013).

    Article  CAS  Google Scholar 

  12. O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, Nano Lett. 9, 731 (2009).

    Article  CAS  Google Scholar 

  13. Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, and K. Oguma, Electrochim. Acta 50, 5354 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, J.F., Chen, B., Kubo, M. et al. Artificial Photosynthesis Device Development for CO2 Photoelectrochemical Conversion.. MRS Advances 1, 447–452 (2016). https://doi.org/10.1557/adv.2016.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.111

Navigation