Skip to main content
Log in

Photonic MOS Based on “Optical Property Inversion”

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Most dielectric materials have very weak electro-optic properties, whereas the optical properties of some plasmonic materials may be greatly tuned, especially around their plasma frequency, where dielectric constant is transiting between positive (“dielectric state”) and negative (“metallic state”) values. In this talk, we will review some of our recent work on electro-optical modulation and introduce a new concept, photonic MOS based on “optical property inversion”. This concept may provide inspiration for the development of nanophotonic devices. While the whole paper only discusses theory and modelling, some new experimental results will be presented in the on-site talk. Throughout this report, “static dielectric constant”, ɛ, refers to material dielectric constant in the DC or radio frequency (RF) regime; “optical dielectric constant”, ε, represents material dielectric constant in the near-infrared regime. This paper was re-written based on an Arxiv file [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  1. Z. Lu and K. Shi, “Photonic MOS Based on ‘Optical Property Inversion’,” arXiv:1504.07546 (2015).

  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).

    Article  CAS  Google Scholar 

  3. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulator and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quant. Electron. 16, 6–22 (2010).

    Article  CAS  Google Scholar 

  4. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).

    Article  CAS  Google Scholar 

  5. F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks,” Opt. Express 16, 7540–7550 (2008).

    Article  CAS  Google Scholar 

  6. J. Liu., M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photon. 2, 433–437 (2008).

    Article  CAS  Google Scholar 

  7. H.W. Chen, Y. H. Kuo, and J. E. Bowers, “25Gb/s hybrid silicon switch using a capacitively loaded traveling wave electrode,” Opt. Express 18, 1070–1075 (2010).

    Article  CAS  Google Scholar 

  8. Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M.R.T. Tan, T. Kamins, T.J. Ochalski, G. Huyet, and J.S. Harris, “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si,” IEEE J. Sel. Top. Quant. Electron. 16, 85–92 (2010).

    Article  CAS  Google Scholar 

  9. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quant. Electron. 23, 123–129 (1987).

    Article  Google Scholar 

  10. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications Ch. 9 (pp 406–464), (Oxford University Press, 6th edition, 2006).

  11. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, and D.E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).

    Article  CAS  Google Scholar 

  12. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).

    Article  CAS  Google Scholar 

  13. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).

    Article  CAS  Google Scholar 

  14. R.S. Jacobsen, K.N. Andersen, P.I. Borel, J. Fage-Pedersen, L.H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).

    Article  CAS  Google Scholar 

  15. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).

    Article  Google Scholar 

  16. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).

    Article  CAS  Google Scholar 

  17. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010).

    Article  CAS  Google Scholar 

  18. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19, 11507–11516 (2011).

    Article  CAS  Google Scholar 

  19. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).

    Article  CAS  Google Scholar 

  20. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).

    Article  CAS  Google Scholar 

  21. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).

    Article  CAS  Google Scholar 

  22. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A Metamaterial for Directive Emission,” Phys. Rev. Lett. 89, 213902(4) (2002).

    Article  Google Scholar 

  23. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett. 80, 1120–1122 (2002).

    Article  CAS  Google Scholar 

  24. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608(12) (2004).

    Article  Google Scholar 

  25. P. Robusto and R. Braunstein, “Optical measurements of the surface plasmon of indium-tin oxide,” Phys. Stat. Sol. 119, 155–168 (1990).

    Article  CAS  Google Scholar 

  26. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys. 300, 285–293 (2004).

    Article  CAS  Google Scholar 

  27. C. Rhodes, S. Franzen, J.P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905(4) (2006).

    Article  Google Scholar 

  28. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 urn,” Opt. Lett. 34, 839–841 (2009).

    Article  CAS  Google Scholar 

  29. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010).

    Article  CAS  Google Scholar 

  30. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101(3) (2011).

    Article  Google Scholar 

  31. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011).

    Article  CAS  Google Scholar 

  32. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mat. Express. 1, 1090–1099 (2011).

    Article  CAS  Google Scholar 

  33. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano. Lett. 10, 2111–2116 (2010).

    Article  CAS  Google Scholar 

  34. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics, 1, 17–22(2012).

    Article  CAS  Google Scholar 

  35. K. Shi, R. R. Haque, B. Zhao, R. Zhao, and Z. Lu, “Broadband electro-optical modulator based on transparent conducting oxide,” Opt. Lett. 39, 4978–4981 (2014).

    Article  Google Scholar 

  36. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chandler, A. Kriesch, R. Pala, U. Peschel, and H. a Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

    Article  CAS  Google Scholar 

  37. S. M. Sze and Kwok K. Ng, “Physics of Semiconductor Devices (3rd Edition)”, Chapter 4, John Wiley & Sons, Inc.

  38. X. Liu, et al. “Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties,” Appl. Phys. Lett. 105, 181117(4) (2014).

    Article  Google Scholar 

  39. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490 (2012).

    Article  CAS  Google Scholar 

  40. Z. Lu, W. Zhao, and K. Shi, “Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides,” IEEE Photonics J. 4, 735–740 (2012).

    Article  Google Scholar 

  41. K. Shi, W. Zhao, and Z. Lu, “Epsilon-near-zero-slot waveguides and their applications in ultrafast laser beam steering,” in SPIE OPTO (2014), p. 89800L–89800L.

  42. K. Shi and Z. Lu, “Optical modulators and beam steering based on electrically tunable plasmonic material,” J. Nanophotonics 9, 93793 (2015).

    Article  Google Scholar 

  43. V. R. Almeida, Qianfan Xu, C. A. Barrios, and M. Lipson, “Guiding and Confining Light in Void Nanostructure,” Opt. Lett. 29, 1209 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Shi, K. & Yin, P. Photonic MOS Based on “Optical Property Inversion”. MRS Advances 1, 1657–1669 (2016). https://doi.org/10.1557/adv.2015.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2015.5

Navigation