Skip to main content
Log in

Metallic Superlattices: The Study of Materials at Length Scales From a Few to Hundreds of Angstroms

  • Technical Features
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We present the possibilities that metallic superlattices offer for the study of materials at length scales ranging from a few to hundreds of angstroms. The materials problems being studied span practically all interesting solid-state phenomena, including superconductivity, magnetism, elastic behavior, development of novel materials, diffusion, ion beam mixing, crystallization, and amorphization. Several applications are also being pursued. We present a few examples of problems that can be studied at different length scales. Emphasis is made that for a proper study of materials properties, extensive structural characterization is imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Synthetic Modulated Structures, edited by L.L. Chang and B.C. Giessen, (Academic Press, New York, 1985).

    Google Scholar 

  2. Epitaxial Growth, edited by J.W. Matthews, (Academic Press, New York, 1975).

    Google Scholar 

  3. Interfaces, Superlattices, and Thin Films, edited by J.D. Dow and I.K. Schuller, (Materials Research Society, Pittsburgh, 1987) (in press).

    Google Scholar 

  4. J. DuMond and J.P. Youtz, J. Appl. Phys. 11 (1940) p. 357.

    Article  CAS  Google Scholar 

  5. S.M. Durbin, J.E. Cunningham, M.F. Mochel, and C.P. Flynn, J. Phys. F11 (1981) p. L223.

    Article  Google Scholar 

  6. G. Hertel, D.B. McWhan, and J.M. Rowell, in “Proceedings of IV Conference on Superconductivity in d- and f-Band Metals,” edited by W. Weber and W. Buckel, (Kernsforschungsanlage, Karlsruhe, W. Germany, 1982).

    Google Scholar 

  7. Y. Lepetre, I.K. Schuller, G. Rasigni, R. Rivoira, R. Philip, and P. Dhez, SPIE Proc. 563 (1985) p. 258.

    Article  CAS  Google Scholar 

  8. D.B. McWhan, in Ref. 1., p. 43.

  9. T.W. Barbee, Jr., in Ref. 1., p. 313.

  10. I.K. Schuller, Phys, Rev. Lett. 44 (1980) p. 1597.

    Article  CAS  Google Scholar 

  11. S.T. Ruggiero, T.W. Barbee, Jr., and M.R. Beasley, Phys. Rev. Lett. 45 (1980) p. 1299.

    Article  CAS  Google Scholar 

  12. M.R. Khan, C.S.L. Chun, G.P. Felcher, M. Grimsditch, A. Kueny, C.M. Falco, and I.K. Schuller, Phys. Rev. B 27 (1983) p. 7186.

    Article  CAS  Google Scholar 

  13. R.E. Camley, T.S. Rahman, and D.L. Mills, Phys. Rev. B 27 (1983) p. 261; P. Grünberg and K. Mika, Phys. Rev. B 27 (1983) p. 2955.

    Article  CAS  Google Scholar 

  14. J.E. Hilliard, in Modulated Structures-1979, edited by J.M. Cowley, J.B. Cohen, M.B. Salamon, and B.J. Wuensch, AIP Conf. Proc. 53 (1979) p. 407.

    Article  CAS  Google Scholar 

  15. M.B. Salamon, S. Sinha, J.J. Rhyne, J.E. Cunningham, R.W. Erwin, J. Borchers, and C.P. Flynn, Phys. Rev. Lett. 56 (1986) p. 259.

    Article  CAS  Google Scholar 

  16. B.J. Thaler, J.B. Ketterson, and J.E. Hilliard, Phys. Rev. Lett. 41 (1978) p. 336.

    Article  CAS  Google Scholar 

  17. T.R. Werner, I. Banerjee, Q.S. Yang, C.M. Falco, and I.K. Schuller, Phys. Rev. B 26 (1982) p. 2224.

    Article  CAS  Google Scholar 

  18. M.B. Brodsky, Phys. Rev. B 25 (1982) p. 6060.

    Article  CAS  Google Scholar 

  19. E.R. Moog and S.D. Bader, Superlattices and Microstructures, 1 (1985) p. 543.

    Article  CAS  Google Scholar 

  20. R.B. Schwarz and W.L. Johnson, Phys. Rev. Lett. 51 (1983) p. 415.

    Article  CAS  Google Scholar 

  21. A. Kueny, M. Grimsditch, K. Miyano, I. Banerjee, C.M. Falco, and I.K. Schuller, Phys. Rev. Lett. 48 (1982) p. 166.

    Article  CAS  Google Scholar 

  22. W.-S. Zhou, H.K. Wong, J.R. Owers-Bradley, and W.P. Halperin, Physica 108B (1981) p. 953.

    Google Scholar 

  23. C.F. Majkrzak, J.W. Cable, J. Kwo, M. Hong, D.B. McWhan, Y. Yafet, J.V. Waszczak, and C. Vettier, Phys. Rev. Lett. 56 (1986) p. 2700.

    Article  CAS  Google Scholar 

  24. See for instance, C.L. Fu, A.J. Freeman, and T. Oguchi, Phys. Rev. Lett. 54 (1985) p. 2700.

    Article  CAS  Google Scholar 

  25. H. Homma, K-Y. Yang, and I.K. Schuller, in Ref. 3 (and to be published).

  26. A.M. Saxena and C.F. Majkrzak, in Thin Film Multilayer Neutron Monochromators, edited by J. Faber, Jr., AIP Conf. Proc. 89 (1982) p. 193.

    Article  CAS  Google Scholar 

  27. R.-P. Haelbich, A. Segmüller, and E. Spiller, Appl. Phys. Lett. 34 (1979) p. 184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. Ivan K. Schuller is a senior scientist and group leader of the Layered and Thin Film Materials Group at the Materials Science Division of Argonne National Laboratory. He is a member of the Chilean Physical Society, a Fellow of the American Physical Society, and is currently secretary-treasurer of the International Physics Group of APS. His research interests are in Condensed matter physics, mostly in using thin film techniques to study problems in x-ray optics, superconductivity, and magnetism.

Dr. Hitoshi Homma is an assistant physicist in the Materials Science Division at Argonne National Laboratory. His research interests include structiiral, magnetic, and transport phenomena at surfaces, Interfaces, and superlattices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, I.K., Homma, H. Metallic Superlattices: The Study of Materials at Length Scales From a Few to Hundreds of Angstroms. MRS Bulletin 12, 18–22 (1987). https://doi.org/10.1557/S0883769400068081

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400068081

Navigation