Skip to main content
Log in

Diffusion in Polymer Alloy Melts

  • Polymer
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Diffusion in polymer alloys or blends can be used to extract information on the fundamentals of the dynamics of individual polymer chains in the melt and the thermodynamics of the interaction between unlike polymer species. The dynamics of individual chains are available from measurements of the tracer diffusion coefficients, D*, of the various species while the thermodynamics of interaction, represented by the Flory parameter, x, can be obtained from measurements of the mutual diffusion or interdiffusion coefficient, D. We will show that these quantities can be measured conveniently by forward recoil spectrometry (FRES), an ion beam analysis technique that can determine the concentration versus depth profile of polymers labeled with deuterium diffusing into unlabeled polymer matrices.

For high enough molecular weight of the matrix, the tracer diffusion coefficient of both species in the blend scale as D0N−2, where N is the number of monomer segments per diffusing chain; the constant D0, however, can differ by more than 104 for chemically different molecules diffusing in the same blend, suggesting that conventional concepts of chain dynamics in melts, such as monomer friction coefficients, need to be reexamined. The mutual diffusion coefficient is controlled by the faster species in the blend (the one with the larger D*N product) in agreement with what was found in metallic alloys (but in sharp disagreement with the “slow” theory of mutual diffusion which predicts that the slower species controls). Since the combinatorial (ideal) entropy of mixing of polymers is low, the thermodynamic driving force for diffusion is dominated by enthalpy and excess entropy of mixing (x) to a degree unprecedented for atomic or small molecule systems. This means that one can observe not only a thermodynamic “slowing down” of diffusion when x becomes positive as one nears the spinodal but also a large thermodynamic “speeding up” of diffusion when x is negative. Measurements of mutual diffusion turn out to be one of the most sensitive methods available for measuring x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Klein, Contemporary Physics, 20 (1979) p. 11.

    Article  Google Scholar 

  2. S.S. Voyutskii, Adhesion and Autohesion of High Polymers (Wiley-Interscience, New York, 1963).

    Google Scholar 

  3. P.G. deGennes, J. Chem. Phys. 72 (1980) p. 4756.

    Article  CAS  Google Scholar 

  4. P.J. Flory, Principies of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).

    Google Scholar 

  5. S. Krause, J. Macromol. Sci. Rev. Macromol. Chem. C7 (1972) p. 251.

    Article  Google Scholar 

  6. P.J. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969).

    Book  Google Scholar 

  7. J.D. Ferry, Viscoelasticity Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

    Google Scholar 

  8. P.G. deGennes, J. Chem. Phys. 55 (1971) p. 572.

    Article  Google Scholar 

  9. P.G. deGennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  10. M. Doi and S.F. Edwards, J. Chem. Soc. Faraday II 8 (1980) p. 1789, 1809, 1818.

    Google Scholar 

  11. W.W. Graessley, Roy. Soc. Chem. Faraday Symposium No. 18 (1984) p. 1.

  12. W.W. Graessley, Adv. in Polym. Sci. 47 (1982) p. 76.

    Google Scholar 

  13. J. Klein, Macromolecules 19 (1986) p. 105.

    Article  CAS  Google Scholar 

  14. M. Daoud and P.G. deGennes, J. Polym. Sci. Polym. Phys. Ed. 17 (1979) p. 1971.

    Article  CAS  Google Scholar 

  15. P.F. Green, P.J. Mills, C.J. Palmstrom, J.W. Mayer and E.J. Kramer, Phys. Rev. Lett. 53 (1984) p. 2145.

    Article  CAS  Google Scholar 

  16. P.F. Green and E.J. Kramer, Macromolecules 19 (1986) p. 1108.

    Article  CAS  Google Scholar 

  17. R.J. Composto, J.W. Mayer, E.J. Kramer and D.M. White, Phys. Rev. Lett. 57 (1986) p. 1312.

    Article  CAS  Google Scholar 

  18. R.J. Composto, PhD thesis, Cornell University, 1987.

  19. P.J. Mills, P.F. Green, C.J. Palmstrom, J.W. Mayer and E.J. Kramer, Appl. Phys. Lett. 45 (1984) p. 957.

    Article  CAS  Google Scholar 

  20. P.F. Green, P.J. Mills and E.J. Kramer, Polymer 27, (1986) p. 1603.

    Article  Google Scholar 

  21. B.L. Doyle and P.S. Peercy, Appl. Phys. Lett. 34 (1979) p. 811.

    Article  CAS  Google Scholar 

  22. E.J. Kramer, P.F. Green and P.J. Palmstrom, Polymer 25 (1984) p. 473.

    Article  CAS  Google Scholar 

  23. H. Sillescu, Makromol. Chem. Rapid Commun. 5 (1984) p. 519.

    Article  CAS  Google Scholar 

  24. F. Brochard, J. Jouffroy and P. Levinson, Macromolecules 16 (1983) p. 1638.

    Article  CAS  Google Scholar 

  25. F. Brochard and P.G. deGennes, Europhysics Lett. 1 (1986) p. 221.

    Article  CAS  Google Scholar 

  26. P.F. Green, P.J. Palmstrom, J.W. Mayer and E.J. Kramer, Macromolecules 18 (1985) p. 501.

    Article  CAS  Google Scholar 

  27. L. Darken, Trans. AIME 174 (1948) p. 184.

    Google Scholar 

  28. R.J. Composto, E.J. Kramer and D.M. White, Nature (London) in press.

  29. E.A. Jordan, R.C. Ball, A.M. Donald, L.J. Fetters, R.A.L. Jones and J. Klein, Macromolecules (submitted).

  30. R.A.L. Jones, J. Klein and A.M. Donald, Nature 321 (1986) p. 161.

    Article  CAS  Google Scholar 

  31. P.F. Green and B.L. Doyle, Phys. Rev. Lett. 57 (1986) p. 2407.

    Article  CAS  Google Scholar 

  32. F.S. Bates and G.D. Wignall, Phys. Rev. Lett. 57 (1986) p. 2407.

    Article  Google Scholar 

  33. H. Yang, R.S. Stein, C.C. Han, B.J. Bauer and E.J. Kramer, Polymer Commun. 27 (1986) p. 132.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, P.F., Kramer, E.J. Diffusion in Polymer Alloy Melts. MRS Bulletin 12, 42–47 (1987). https://doi.org/10.1557/S0883769400066744

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400066744

Navigation