Skip to main content
Log in

Pattern Formation During the Growth of Liquid Crystal Phases

  • Complex Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Conclusion

The contribution of liquid crystals to the study of growth phenomena has been two fold:

  • First, experiments with liquid crystals have allowed us to test various theoretical predictions that, done with traditional materials, are difficult or impossible. These include exploration of the marginal stability curve, dendrite selection by surface tension anisotropy and the Herring instability.

  • Second, and more important, they have opened new experimental and theoretical prospects. Nematics pose the problem of secondary instabilities of a cellular front and have led, for example, to the discovery of drifring solitary modes. Their main advantage, in comparison to “classical materials, is their fluidity and consequent rapid phase dynamics. Smectics have shown new phenomena, such as cells with an angular discontinuity at the tip and an oscillatory cell-to-dendrite transition. They are also useful in studying facet destabilization and macrostep dynamics in directional growth. Finally, columnar mesophases have made possible the study of morphological transitions between different growth regimes. They also pose the problem of the stability of the effective fronts observed at large velociry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, 1975). P.E. Cladis, Wim van Saarloos, D.A. Huse, J.S. Patel, J.W. Goodby, P.L. Finn, “Dynamical Test of Phase Transition Order,” Phys. Rev. Lett. 62 (1989) p. 1764. M.A. Anisimov, P.E. Cladis, E.E. Gorodetskii, D.A. Huse, V.E. Podneks, V.G. Taratuta, W. van Saarloos, V.P. Voronov, “Experimental Test of Fluctuation-induced First-order Phase Transition: the Nematic-smectic A Transition, Phys. Rev. A 41 (1990) p. 6749.

  2. M. Kléman, Points. Lignes. Parois. Tome I and II (Les Editions de Physique, 1977).

  3. P. Oswald, “Quelques Aspects de la Plasticit des Smectiques” in Systèmes à Mémoire: une approche multidisciplinaire, edited by J. Delacour and J.-C.S. Lévy (Masson, 1989). G. Durand, “Plastic Behavior and Polymorphism of Smectic Liquid Crystal”;, J. Chim. Phys. 80 (1983) p. 119.

  4. A. Joets, R. Ribotta, in Partially Integrable Nonlinear Evolution Equations, edited by R. Conte et al. (Kluwer Academic Publishers, Dordrecht, 1990) p. 279. G. Goren, I. Procaccia, S. Rasenat, V. Steinberg, “Interactions and Dynamïcs of Topological Defects: Theory and Experiments near the Onset of Weak Turbulence,” Phys. Rev. Lett. 63 (1989) p. 1237. J.M. Dreyfus, E. Guyon, “Convective Instabilities in Nematics Caused by an Elliptical Shear, J. Physique France 42 (1981) p. 283. E. Guazzelli, E. Guyon, J.E. Wesfreid, “Dislocations in a Roll Hydrodynamic Instability in Nematics: Static Limit,” Phil. Mag. A 48 (1983) p. 709.

    Google Scholar 

  5. G. Srajer, S. Fraden, R.B. Meyer, “Field-induced Nonequilibrium Periodic Structures in Nematic Liquid Crystals: Nonlinear Study of the Twist Frederiks Transition,” Phys. Rev. A 39 (1989) p. 4828. D.W. Allender, B.J. Frisken, P. Palffy-Muhoray, “Theory of an Electric Field Induced Periodic Phase in a Nematic Film,” Liq. Cryst. 5 (1989) p. 735.

    Article  CAS  Google Scholar 

  6. P. Oswald, J. Bechhoefer, A. Libchaber, F. Lequeux, “Pattern Formation behind a Moving Cholesteric Smectic-A Interface, Phys. Rev. A 36 (1987) p. 5832. F. Lequeux, P. Oswald, J. Bechhoefer, “Influence of Anisotropic Elasticity in a Cholesteric Liquid Crystal Contained between Two Plates,” Phys. Rev. A 40 (1989) p. 3974. P. Ribiere, P. Oswald, “Nucleation and Growth of Cholesteric Fingers under Electric Field,” J. Physique France 51 (1990) p. 1703.

    Article  CAS  Google Scholar 

  7. V.K. Horvath, J. Kertesz, T. Vicsek, “Viscous Fingering in Smectic Liquid Crystal,” Eur. Phys. Lett. 4 (1987) p. 1133. A. Buka, P. Palffy-Muhoray, Z. Racz, “Viscous Fingering in Liquid Crystals,” Phys. Rev. A 36 (1987) p. 3984. L. Lam, H.C. Morris, R.F. Shaos, S.L. Yang, Z.C. Liang, S. Zheng, H. Liu, “Dynamics of Viscous Fingers in Hele-Shaw Cells of Liquid Crystals: Theory and Experiment,” Liq. Cryst. 5 (1989) p. 1813.

    Article  CAS  Google Scholar 

  8. W.W. Mullins, R.F. Sekerka, “Stability of Planar Interface during Solidification of a Dilute Binary Alloy,” J. App. Phys. 35 (1964) p. 444. In exceptionally pure materials, the instability can also be caused by the release of latent heat at the interface.

    Article  Google Scholar 

  9. J.S. Langer, “Instabilities and Pattern Formation in Crystal Growth,” Rev. Mod. Phys. 52 (1980) p. 1.

    Article  CAS  Google Scholar 

  10. D.J. Wollkind, L.A. Segel, “A Nonlinear Stability Analysis of the Freezing of a Dilute Binary Alloy,” Phil. Trans. Roy. Soc. London 268 (1970) p. 351. B. Carol, C. Caroli, B. Roulet, “On the Emergence of One-dimensional Front Instabilities in Directional Solidification and Fusion of Binary Mixture,” J. Physique France 43 (1982) p. 1767.

    CAS  Google Scholar 

  11. Dynamics of Curved Fronts, edited by P. Pelcé (Academic Press, 1988).

  12. P. Oswald, J. Bechhoefer, and A. Libchaber, “Instabilities of a Moving Nematicisotropic Interface, Phys. Rev. Lett. 58 (1987) p. 2318.

    Article  CAS  Google Scholar 

  13. J. Bechhoefer, A. Simon, A. Libchaber, and P. Oswald, “Directional Solidification of Liquid Crystals,” in Random Fluctuations and Pattern Growth: Experiments and Models, edited by H.E. Stanley and N. Ostrowsky (Kluwer Academic Publishers, Dordrecht, 1988) p. 93.

    Chapter  Google Scholar 

  14. J. Bechhoefer, A. Simon, A. Libchaber, and P. Oswald, “Destabilization of a Flat Nematic Interface,” Phys. Rev. A 40 (1989) p. 2042.

    Article  CAS  Google Scholar 

  15. A. Simon, J. Bechhoefer, and A. Libchaber, “Solitons and the Eckhaus Instability in Directional Solidification,” Phys. Rev. Lett. 61 (1988) p. 2574.

    Article  CAS  Google Scholar 

  16. A. Simon and A. Libchaber, “Moving Interface: the Stability Tongue and Phenomena Within,” Phys. Rev. A 41 (1990) p. 7090.

    Article  CAS  Google Scholar 

  17. P. Coullet, G. Iooss, “Instabilities of One-dimensional Cellular Patterns,” Phys. Rev. Lett. 64 (1990) p. 866.

    Article  CAS  Google Scholar 

  18. P. Coullet, R.E. Goldstein, and G.H. Gunaratne, “Parity-breaking Bifurcations of Modulated Patterns in Hydrodynamic Systems,” Phys. Rev. Lett. 63 (1989) p. 1954.

    Article  CAS  Google Scholar 

  19. M. Rabaud, S. Michalland, and Y. Couder, “Dynamical Regimes of Directional Viscous Fingering: Spatiotemporal Chaos and Wave Propagation, Phys. Rev. Lett. 64 (1990) p. 184. G. Faivre, S. de Cheveigne, C. Guthmann, and P. Kurowsi, “Solitary Tilt Waves in Thin Lamellar Eutectics,” Europhys. Lett. 9 (1989) p. 779. K. Kassner and C. Misbah, “Parity Breaking in Eutectic Growth,” Phys. Rev. Lett. 65 (1990) p. 1458.

    Article  CAS  Google Scholar 

  20. D.K. Shangguan and J.D. Hunt, “Dynamical Study of the Pattern Formation of Faceted Cells,” J. Cryst. Growth 96 (1989) p. 856.

    Article  CAS  Google Scholar 

  21. P. Oswald and F. Melo, “Smectic-A Smectic-B Interface: Faceting and Surface Free Energy Measurement,” J. Physique 50 (1989) p. 3527.

    Article  CAS  Google Scholar 

  22. P. Nozières, “Shape and Growth of Crystals,” Lectures given at the Beg Rohu Summer School, 1989.

  23. C. Herring, “Some Theorems on the Energies of Crystal Surfaces,” Phys. Rev. 82 (1951) p. 87.

    Article  CAS  Google Scholar 

  24. F. Melo and P. Oswald, “Experimental Evidence of the Herring Instability at the Smectic-A Smectic-B Interface,” to appear in Annales de Chimie.

  25. J. Bechhoefer, P. Oswald, A. Libchaber, and C. Germain, “Observation of Cellular and Dendritic Growth of Smectic-A Smectic-B Interface, Phys. Rev. A 37 (1988) p. 1691.

    Article  CAS  Google Scholar 

  26. F. Melo and P. Oswald, “Destabilization of a Faceted Smectic-A Smectic-B Interface,” Phys. Rev. Lett. 64 (1990) p. 1381.

    Article  CAS  Google Scholar 

  27. F. Melo and P. Oswald, “Facet Destabilization and Macrostep Dynamics at the Smectic-A Smectic-B Interface,” to be published in J. Physique France (March 1991).

  28. R. Bowley, B. Caroli, C. Caroli, F. Graner, and P. Nozières, B. Roulet, “On Directional Growth of a Faceted Crystal,” J. Physique France 50 (1989) p. 1377. B. Caroli, C. Caroli, and B. Roulet, “Directional Solidification of Faceted Crystal II. Phase Dynamics of Crenellated Front Patterns,” J. Physique France 50 (1989) p. 3075.

    Article  CAS  Google Scholar 

  29. P. Oswald, “Morphological Stability of a Circular Germ in a Discotic Liquid Crystal,” J. Physique 49 (1988) p. 1083.

    Article  CAS  Google Scholar 

  30. P. Oswald, “Croissance d’une Phase Discotique,” J. Physique 50C3 (1989) p. 127.

    Google Scholar 

  31. P. Oswald, J. Malthête, and P. Pelcé, “Free Growth of Thermotropic Columnar Mesophase: Supersaturation Effect,” J. Physique 50 (1989) p. 2121.

    Article  CAS  Google Scholar 

  32. L.N. Brush, R.F. Sekerka, “A Numerical Study of Two-dimensional Crystal Growth Forms in the Presence of Anisotropic Growth Kinetics,” J. Cryst. Growth 96 (1989) p. 419.

    Article  CAS  Google Scholar 

  33. J.S. Langer, “Lectures in the theory of Pattern Formation” in Chance and Matter (Les Houches 1986), edited by J. Souletie, J. Vannimenus, R. Stora (North Holland, 1987). D.A. Kessler, J. Koplik, and H. Levine, “Pattern Selection in Fingered Growth Phenomena,” Adv. Phys. 37 (1988) p. 255.

  34. P. Oswald, “Dendritic Growth of a Discotic Liquid Crystal,” J. Physique 49 (1988) p. 1083.

    Article  CAS  Google Scholar 

  35. M. Ben Amar, private communication.

  36. G. Deutscher, “Introduction to Dense Branching Morphology,” in Random Fluctuations and Pattern Growth: Experiments and Models, edited by H.E. Stanley and N. Ostrowsky (Kluwer Academic Publishers, Dordrecht, 1988) p. 117. Y. Couder, “Viscous Fingering in Circular Geometry,” ibid., p. 75.

    Chapter  Google Scholar 

  37. D. Grier, E. Ben-Jacob, R. Clarke, and L.M. Sander, “Morphology and Microstructure in Electrochemical Deposition of Zinc, Phys. Rev. Lett. 56 (1986) p. 1264. Y. Sawada, A. Dougherty, and J.P. Gollub, “Dendritic Patterns in Electrolytic Metal Deposits,” Phys. Rev. Lett. 56 (1986) p. 1260.

    Article  CAS  Google Scholar 

  38. E.A. Brener, M.B. Gellikman, and D.E. Temkin, “Growth of a Needle-Shaped Crystal in a Channel,” Sov. Phys. JETP 67 (1988) p. 1002.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswald, P., Bechhoefer, J. & Melo, F. Pattern Formation During the Growth of Liquid Crystal Phases. MRS Bulletin 16, 38–45 (1991). https://doi.org/10.1557/S0883769400057894

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400057894

Navigation