Skip to main content
Log in

Polymer-Dispersed Liquid Crystals: Boojums at Work

  • Complex Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Conclusions

Polymer dispersions offer high promise for new types of electrooptic and nonlinear optic materials. The materials science problems involved in these materials are both challenging and fascinating as well as limitless. They illustrate the need for a better fundamental understanding of the effects of surfaces and finite size on liquid crystal materials. Many practical problems lie ahead: lowering the threshold voltage while increasing the resistivity for active matrix technologies; broadening the temperature range and improving environmental stabilities; creating different operation modes such as reverse mode; incorporating bistability; improving the materials for infrared shuttering for applications in solar control and IR cameras. Polymer dispersions are the beginning of a new science in optical materials with a promising future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Land, U.S. Patent 2,123,902, July 19, 1938.

  2. C. Hilsum, U.K. Patent 1,442,360, July 14, 1976.

  3. H.G. Craighead, J. Cheng, and S. Hackwood, Appl. Phys. Lett. 40 (1982) p. 22.

    Article  CAS  Google Scholar 

  4. James L. Fergason, SID Digest of Technical Papers 16 (1985) p. 68.

    Google Scholar 

  5. J.W. Doane, N.A. Vaz, B.-G. Wu, and S. Žumer, Appl. Phys. Lett. 48 (1986) p. 269.

    Article  CAS  Google Scholar 

  6. J.W. Doane, in Liquid Crystals: Applications and Uses, edited by B. Bahadur (World Scientific Publishers, New Jersey, 1990), Chapter 14.

    Google Scholar 

  7. J.W. Doane, J.L. West, J.B. Whitehead Jr., and D.S. Fredley, Soc. for Information Display Digest XXI (1990) p. 224.

    Google Scholar 

  8. E. Dubois-Violette and O. Parodi, J. Phys. (Paris) Colloque C4 (1969) p. 57.

    Google Scholar 

  9. S. Candau, P. LeRoy, and F. Debeauvais, Mol. Cryst. Liq. Cryst. 23 (1973) p. 283.

    Article  CAS  Google Scholar 

  10. M.J. Press and A.S. Arrot, Phys. Rev. Lett. 33 (1974) p. 403.

    Article  CAS  Google Scholar 

  11. G.E. Volovik and O.D. Lavrentovich, Zh. Eksp. Teor. Fiz. 85 (1983) p. 1997 [Sov. Phys. JETP 58 (1983) p. 1159).

    CAS  Google Scholar 

  12. R.D. Williams J. Phys. A Math. Gen. 19 (1986) p. 3211.

    Article  Google Scholar 

  13. S. Žumer and D.W. Allender, Bull. Am. Phys. Soc. 31 (1986) p. 691.

    Google Scholar 

  14. P. Drzaic, Mol. Cryst. Liq. Cryst. 154 (1988) p. 239.

    Google Scholar 

  15. H. Yang, D.W. Allender, and M.A. Lee, Bull. Am. Phys. Soc. 33 (1988) p. 275.

    Google Scholar 

  16. A.E. Köhler, Z. Chemie, Leipzig 259 (1988) p. 33.

    Google Scholar 

  17. D.W. Allender and S. Žumer, Proc. Society for Photonic Instrumentation and Engineering 1080 (1989) p. 18.

    CAS  Google Scholar 

  18. A.V. Koval’chuk, M.V. Kurik, O.D. Lavrentovich, and V.V. Sagan, Zh. Eksp. Teor. Fiz. 94 (1988) p. 350.

    Google Scholar 

  19. J. Erdmann, S. Žumer, and J.W. Doane, Phys. Rev. Lett. 64 (1990) p. 1907.

    Article  CAS  Google Scholar 

  20. S.Žumer (to be published).

  21. G.E. Volovik, JETP Lett. 28 (1978) p. 59.

    Google Scholar 

  22. B.G. Wagner, R. Ondris-Crawford, J.H. Erdmann, E. Boyko, S. Žumer, and J.W. Doane (to be published).

  23. A. Golemme, S. Žumer, J.W. Doane, and M.E. Neubert, Phys. Rev. A 37 (1988) p. 559.

    Article  CAS  Google Scholar 

  24. B.-G. Wu, J.H. Erdmann, and J.W. Doane, Liq. Cryst. 15 (1989) p. 1453.

    Article  Google Scholar 

  25. Paul S. Drzaic, Liq. Cryst. 3 (1988) p. 1543.

    Article  CAS  Google Scholar 

  26. G.P. Crawford, M. Vilfan, J.W. Doane, and I. Vilfan, Phys. Rev. A (to appear).

  27. P.E. Cladis and M. Kléman, J. de Phys. 33 (1972) p. 591.

    Article  CAS  Google Scholar 

  28. R.B. Meyer, Phil. Mag. 27 (1973) p. 405.

    Article  CAS  Google Scholar 

  29. C.E. Williams, P.E. Cladis, and M. Kléman, Mol. Cryst. Liq. Cryst. 21 (1973) p. 355.

    Article  CAS  Google Scholar 

  30. M. Vilfan, I. Vilfan, and S. Žumer (private communication).

  31. E. Kaneko, Liquid Crystal TV Displays: Principles and Applications of Liquid Crystal Displays (D. Reidel Publ. Co., Boston, 1987).

    Google Scholar 

  32. Z. Yaniv, J.W. Doane, J.L. West, and W. Tamura-Lis, Soc. for Information Display Digest XX (1989) p. 572.

    Google Scholar 

  33. M. Kunigita, Y. Hirai, Y. Ooi, S. Niryama, T. Asakawa, K. Masumo, H. Kumai, M. Yuki, and T. Gunjima, Soc. for Information Display Digest XII (1990) p. 227.

    Google Scholar 

  34. G.P. Montgomery Jr., in Large-Area Chromogenics: Materials and Devices for Transmittance Control, edited by C.M. Lampert and G.G. Granqvist (SPIE, to be published).

  35. Y.D. Ma, B.-G. Wu, and G. Xu, SPIE Proc. for the Society of Optical Engineering 1257 (1990) p. 46.

    Article  CAS  Google Scholar 

  36. P. Drzaic, Soc. for Information Display Digest XXI (1990) p. 210.

    Google Scholar 

  37. John L. West, Mol. Cryst. Liq. Cryst. 157 (1988) p. 427.

    CAS  Google Scholar 

  38. G.W. Smith and N.A. Vaz, Liquid Crystals 3 (1988) p. 543.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doane, J.W. Polymer-Dispersed Liquid Crystals: Boojums at Work. MRS Bulletin 16, 22–28 (1991). https://doi.org/10.1557/S0883769400057869

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400057869

Navigation