Skip to main content
Log in

Vacancies and Self-Interstitials

  • Point Defects Part I
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Conclusions

This article has traced the concept of vacancy diffusion, starting with the Kirkendall effect through various stages to present universal acceptance as the preferred mechanism for impurity and self-diffusion for most metals and insulators. For pure metals we expect the activation energy for self-diffusion to be the sum of the energy for vacancy formation and the energy of motion but for impurity diffusion the temperature dependence of the correlation effect will make a contribution. Because of its large formation energy, the self-interstitial is not a thermal defect, but it does play a dominant role in the low-temperature annealing of radiation-damaged specimens. Large-scale computer calculations have been important in exploring both the process of displacement generation and the subsequent history of the interstitialcy as it moves in diffusion. In the guise of a crowdion the interstitial can be expected to have a long free path, but it is more stable in the dumbbell mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Smigelskas and E.O. Kirkendal, Trans. AIME 171 (1947) p. 130.

    Google Scholar 

  2. N.F. Mott and M.J. Littleton, Trans. Faraday Society 34 (1938) p. 485.

    Article  CAS  Google Scholar 

  3. H.B. Huntington and Frederick Seitz, Phys. Rev. 61 (1942) p. 315.

    Article  CAS  Google Scholar 

  4. F. Fuchs, Proc. R. Soc. London 151 (1935) p. 585; 153 (1936) p. 622; 157 (1936) p. 444.

    CAS  Google Scholar 

  5. M. Born and J.E. Mayer, Z. Phys. 75 (1932) p. 1.

    Article  CAS  Google Scholar 

  6. J. Steigman, W. Shockley, and F. Nix, Phys. Rev. 56 (1939) p. 13.

    Article  CAS  Google Scholar 

  7. H.B. Huntington, Phys. Rev. 61 (1942) p. 326.

    Google Scholar 

  8. F.G. Fumi, Philos. Mag. 7th series 46 (1955) p. 1007.

    Article  CAS  Google Scholar 

  9. C. Zener, Acta Crystallogr. 8 (1950) p. 346.

    Article  Google Scholar 

  10. E.O. Kirkendall, Trans. AIME 147 (1942) p. 104.

    Google Scholar 

  11. I.C.C. DaSilva and R.F. Mehl, Trans. AIME 191 (1951) p. 155.

    CAS  Google Scholar 

  12. A. Nowick, Phys. Rev. 62 (1951) p. 551.

    Article  Google Scholar 

  13. J.W. Kaufman and J.S. Koehler, Phys. Rev. 88 (1952) p. 149; 97 (1955) p. 555.

    Article  Google Scholar 

  14. H.C. Gatos and A.D. Kurtz, J. Metals 6 (1954) p. 616.

    CAS  Google Scholar 

  15. R.D. Simmons and R.W. Balluffi, Phys. Rev. 117 (1960) p. 52; 119 (1960) p. 600.

    Article  CAS  Google Scholar 

  16. R.D. Simmons and R.W. Balluffi, Phys. Rev. 119 (1960) p. 600 (1960).

    Article  CAS  Google Scholar 

  17. R.D. Simmons and R.W. Balluffi, Phys. Rev. 117 (1960) p. 52.

    Article  CAS  Google Scholar 

  18. R.D. Simmons and R.W. Balluffi, Phys. Rev. 125 (1962) p. 862.

    Article  Google Scholar 

  19. R.D. Simmons and R.W. Balluffi, Phys. Rev. 129 (1963) p. 1533.

    Article  CAS  Google Scholar 

  20. R. Feder and A.S. Nowick, Philos. Mag. 15 (1967) p. 805.

    Article  CAS  Google Scholar 

  21. D. Lazarus, Phys. Rev. 93 (1954) p. 973.

    Article  CAS  Google Scholar 

  22. A.D. Le Claire, Philos. Mag. 7 (1962) p. 141; 10 (1962) p. 641.

    Article  Google Scholar 

  23. A.W. Overhauser, Phys. Rev. 90 (1953) p. 393.

    Article  Google Scholar 

  24. A.D. Le Claire, Philos. Mag. 10 (1964) p. 641.

    Article  CAS  Google Scholar 

  25. T.H. Blewett, R.R. Coltman, C.E. Klabunde, and T.S. Noggle, J. Appl. Phys. 28 (1957) p. 639.

    Article  Google Scholar 

  26. H.G. Cooper, J.S. Koehler, and J.W. Marx, Phys. Rev. 94 (1954) p. 496; L. Phys. Rev. 97 (1955) p. 591.

    Article  CAS  Google Scholar 

  27. C.J. Meecham and J.A. Brinkman, Phys. Rev. 103 (1954) p. 1193; A. Sosin and J.A. Brinkman, Phys. Rev. 120 (1960) p. 411.

    Article  Google Scholar 

  28. J.W. Corbett, R.B. Smith, and R.M. Walker, Phys. Rev. 114 (1959) p. 1452, 1460.

    Article  CAS  Google Scholar 

  29. H.B. Huntington, Phys. Rev. 9 (1953) p. 1092.

    Article  Google Scholar 

  30. J.B. Gibson, A.K. Goland, M. Millgram, and G.H. Vineyard, Phys. Rev. 120 (1960) p. 1229.

    Article  CAS  Google Scholar 

  31. T.H. Blewett, R.R. Coltman, C.E. Klabunde, and T.S. Noggle, J. Appl. Phys. 28 (1957) p. 639.

    Article  Google Scholar 

  32. R.H. Silsbee, J. Appl. Phys. 28 (1957) p. 1246.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntington, H.B. Vacancies and Self-Interstitials. MRS Bulletin 16, 33–36 (1991). https://doi.org/10.1557/S0883769400055494

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400055494

Navigation