Skip to main content
Log in

Development of Direct Drive, High-Gain Capsules for Inertial Fusion: A Materials Challenge

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The application of Inertial Confinement Fusion to power production requires the development of a high-yield fusion capsule. Theoretical design calculations suggest that a single shell capsule with a uniformly distributed deuterium-tritium (DT) fuel layer on the inside surface could give the desired high-gain performance when directly driven with 0.35 µm laser light. This design requires operation at cryogenic temperatures necessary to condense DT (20–30 K) and a means of levitating the fuel layer inside the capsule. On e recently suggested method for making this capsule is to use a rigid foam matrix to support the condensed DT in a spherical shell configuration. For such a capsule to be successfully fielded, a number of critical materials problems must be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Bruechner and Siebe Jorna, “Laser-Driven Fusion,” Reviews of Modern Physics, 46, 2 (April 1974) p. 325.

    Article  Google Scholar 

  2. T.H. Johnson, “Inertial Confinement Fusion: Review and Perspective,” Proceeding of the IEEE, 72 (May 1984) p. 548.

    Article  Google Scholar 

  3. J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser Compression of Matter to Super-High Densities; Thermo Nuclear (CTR) Applications,” Nature, 239 (1972) p. 139.

    Article  CAS  Google Scholar 

  4. J.J. Duderstadt and G.A. Moses, Inertial Confinement Fusion, John Wiley and Sons, New York, 1982.

    Google Scholar 

  5. J.H. Nuckolls, “The Feasibility of Inertial Confinement Fusion,” Physics Today, 35, 9 (1982) p. 24.

    Article  CAS  Google Scholar 

  6. R.S. Craxton, R.L. McCrory, and J.M. Soures, “Progress in Laser Fusion,” Sci. Am., 255 (1986) p. 68.

    Article  Google Scholar 

  7. F. Ze, L.J. Suter, S.M. Lane, E.M. Campbell, W.C. Mead, J.D. Lindl, M.D. Rosen, D.W. Phillion, C.W. Hatcher, R.P. Drake, J.S. Hildum, and K.R. Manes, “Compression Measurements in Ablatively Driven Inertial Confinement Fusion,” Plasma Phys. of Controlled Fusion, 10 (1986) p. 33.

    CAS  Google Scholar 

  8. A. Rosencwaig, J.L. Dressler, J.C. Koo, and C.D. Hendricks, “Laser Fusion Hollow Glass Microspheres by the Liquid Droplet Method,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-81421 (1978).

    Google Scholar 

  9. M. Nogami, J. Hayakawa, and T. Moriya, “Fabrication of Hollow Glass Microspheres in the Na2O-B2O3-SiO2 System from Metal Alkoxides,” J. Material Sci., 17 (1982) p. 2845.

    Article  CAS  Google Scholar 

  10. J.H. Campbell, J.Z. Grens, and J.F. Poco, “Preparation and Properties of Hollow Glass Microspheres for Use in Laser Fusion Experiments,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-53516 (1983).

    Book  Google Scholar 

  11. D.E. Solomon, editor, 1981 Inertial Fusion Research Annual Technical Report, KMS Fusion, Inc., Ann Arbor, MI, DOE/DP/40030-4, KMSF-U1198 (1981).

    Google Scholar 

  12. S.A. Letts, D.W. Myers, and L.A. Witt, “Ultrasmooth Plasma Polymerization Coatings for Laser Fusion Targets,” J. Vac. Sci. Technol., 19 (1981) p. 739.

    Article  CAS  Google Scholar 

  13. J.H. Campbell J.Z. Grens, J.F. Poco, and B. Ives, “Preparation and Properties of Poly (Vinyl Alcohol) Microspheres,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-53750 (1986).

    Book  Google Scholar 

  14. V.S. Bushvev, V.M. Dorogotoutsev, A.I. Isakov, N.S. Kobets, N.M. Kozyreva, V.V. Korshak, L.A. Krupinina, Yu. A. Merkul’ev, and A.I. Nikitenko, “Polymer Laser Targets,” Trudy Ordena Lenina Fizicheskogo Institute im. R. V. Lebedava 12, (1980), p. 72–83; translation UCRL-11924, Lawrence Livermore National Laboratory, Livermore, CA.

    Google Scholar 

  15. L.B. Kool, R.L. Nolen, and K.W. Sherwood; J. Vac. Sci Technol., 18 (1981) p. 1233.

    Article  CAS  Google Scholar 

  16. K. Kim, B.J. Smoot, R.L. Woerner, and C.D. Hendricks, “A New Technique for Fabricating Cryogenic Laser Fusion Targets Using Cold-Gas Jets., Appl. Phys. Lett., 34 (1979) p. 282.

    Article  CAS  Google Scholar 

  17. K. Kim and H. Rieger “Cryogenic Inertial Confinement Fusion Target Fabrication System Directly Operable Inside a Room Temperature Target Chamber,” Appl. Phys. Lett., 37 (1980) p. 425.

    Article  CAS  Google Scholar 

  18. Laser Program Annual Report 1984, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-84 (1985), p. 4-12 to 4-15.

  19. Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-85 (1986), p. 3-23 to 3-27.

  20. K. Kim, L. Mok, M.J. Erienborn, and T.P. Bernat, Vac Sci. Technol., A3(3), (1985) p. 1196.

    Article  Google Scholar 

  21. L. Mok, K. Kim, T.P. Bernat and D.H. Darling, J. Vac. Sci. Technol., A1(2), (1983) p. 897.

    Article  Google Scholar 

  22. T. Bernat, D.H. Darling, and J.J. Sanchez “Application of Holographic Interferometry to Cryogenic ICF Target Characterization,” J. Vac. Sci. Technol., 20 (1982) p. 1362.

    Article  CAS  Google Scholar 

  23. D.H. Darling and R.A. Sacks, “Wetted Foam Capsules for Direct Drive ICF Reactor Application,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-93951 (1986).

    Google Scholar 

  24. R.A. Sacks and D.H. Darling “Direct Drive Cryogenic Capsules Employing DT Wetted Foam,” Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-94381 (1986).

    Google Scholar 

  25. Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-85 (1986), p. 3-2 to 3-22.

  26. R.M. Kulsrud, H.P. Furth, E.J. Valeo, and M. Goldhaber, “Fusion Reactor Plasmas with Polarized Nuclei,” Phys. Rev. Lett., 49 (1982) p. 1248.

    Article  CAS  Google Scholar 

  27. P.C. Souers, E.M. Fearon, E.R. Mapoles, J.R. Gaines, and J.D. Sater “Nuclear Spin Polarization of Solid DT,” Lawrence Livermore Laboratory, Livermore, CA, Report UCRL-92700, Rev 1. (1985).

    Google Scholar 

  28. Laser Program Annual Report 1985, Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-50021-85 (1986), p. 3-27 to 3-31.

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. H. Campbell received a BS in Chemistry at Rochester Institute of Technology and a PhD in Physical Chemistry at the University of Illinois.

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, J.H. Development of Direct Drive, High-Gain Capsules for Inertial Fusion: A Materials Challenge. MRS Bulletin 11, 26–29 (1986). https://doi.org/10.1557/S0883769400054464

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400054464

Navigation