Skip to main content
Log in

Ion-Assisted Surface Processing of Electronic Materials

  • Ion-Assisted Processing of Electronic Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Summary

We have discussed the ion-assisted processing of electronic materials in terms of three classes of surface processes—etching, cleaning, and deposition. Chemical mechanisms enhanced by physical processes are of primary importance in etching and cleaning, whereas physical mechanisms play the major role in most deposition processes. In terms of microscopic understanding of the mechanisms associated with ion-assisted deposition, we emphasize the role of surface displacements and their dependence on ion mass and energy. Ioninduced surface defects can modify the kinetics during the film deposition or growth process, and significantly affect the resulting film structure and properties. In research, direct ion beams are most important for characterizing the mechanisms involved, but plasmas are seen to provide the most useful source of ions for application to electronic processing. For the future, we may anticipate continued interest in the use of low-energy ions to increase the control of structure, composition, and properties of surface layers. The main mechanisms will likely depend on the use of the ions to modify kinetic processes, and the primary driving force will likely be the increased requirement of atomic-scale precision in new electronic device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Brice, J.Y. Tsao, and S.T. Picraux, Nucl. Instrum. Methods44 (1989) p. 68.

    Article  Google Scholar 

  2. H.F. Winters and J.W. Coburn, Surf. Sci. Reports, 1992 (in press).

  3. J.W. Butterbaugh, D.C. Gray, and H.H. Sawin, J. Vac. Sci. Technol.B9 (1991) p. 1461.

    Article  Google Scholar 

  4. Plasma Etching: An Introduction, edited by D.M. Manos and D.L. Flamm (Academic Press, Cambridge, MA, 1989).

    Google Scholar 

  5. K. Asakawa and S. Sugata, Jpn. J. Appl. Phys.22 (1983) p. L653; G.A. Vawter and J.R. Wendt, Appl. Phys. Lett.58 (1991) p. 289.

    Article  Google Scholar 

  6. Y. Horiike, T. Tanaka, M. Nakano, S. Iseda, H. Sakaue, H. Sindo, S. Mayazaki, and M. Hirose, J. Vac. Sci. Technol. A8 (1990) p. 1844.

    Article  Google Scholar 

  7. P. Bedrossian and T. Klitsner, Phys. Rev. B44 (1991) p. 13783; Phys. Rev. Lett. 68 (1992) p. 646; and P. Bedrossian, J.E. Houston, E. Chason, J.Y. Tsao, and S.T. Picraux, Phys. Rev. Lett. 67 (1991) p. 124.

    Article  Google Scholar 

  8. B. Anthony, L. Breaux, T. Hsu, S. Banerjee, and A.F. Tasch, J. Vac. Sci. Technol. B7 (1989) p. 621; S.V. Hattangady, R.A. Rudder, M.J. Mantini, G.G. Fountain, J.B. Posthill, and R.J. Markunas, J. Appl. Phys. 67 (1990) p. 1223.

    Article  Google Scholar 

  9. W.-X. Ni, J. Knall, M.A. Hasan, G.V. Hansson, J.-E. Sundgren, S.A. Barnett, L.C. Markert, and J.E. Greene, Phys. Rev. B40 (1989) p. 10449; J.P. Noel, J.E. Greene, N.L. Rowell, S. Kechang, and D.C. Houghton, Appl. Phys. Lett. 55 (1989) p. 1525.

    Article  Google Scholar 

  10. C.-H. Choi, R. Ai, and S.A. Barnett, Phys. Rev. Lett. 67 (1991) p. 2826.

    Article  CAS  Google Scholar 

  11. C.J. Tsai, P. Rozenak, T. Vreeland, and H.A. Atwater, J. Cryst. Growth 111 (1991) p. 931; H.A. Atwater, C.J. Tsai, S. Nikzad, and M.V.R. Murty, in Interface Dynamics and Growth, edited by K.S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992).

    Article  CAS  Google Scholar 

  12. E. Chason, P. Bedrossian, K.M. Horn, J.Y. Tsao, and S.T. Picraux, Appl. Phys. Lett. 57 (1990) p. 1793.

    Article  CAS  Google Scholar 

  13. B. Anthony, T. Hsu, L. Breaux, R. Qian, S. Banerjee, and A. Tasch, J. Electronic Mater. 19 (1990) p. 1089.

    Article  CAS  Google Scholar 

  14. B.R. Appleton, S.J. Pennycook, R.A. Zuhr, N. Herbots, and T.S. Noggle, Nucl. Instrum. Methods B19/20 (1987) p. 975; T. Tokuyama, K. Yagi, K. Miyake, M. Tamura, N. Natsuki, and S. Tachi, Nucl. Instrum Methods 182/183 (1981) p. 241.

    Article  Google Scholar 

  15. R.A. Zuhr, T.E. Haynes, M.D. Galloway, S. Tanaka, Y. Yamada, and I. Yamada, Nucl. Instrum. Methods B59/60 (1991) p. 308.

    Article  Google Scholar 

  16. I. Yamada, Nucl. Instrum. Methods B37/38 (1988) p. 770; R.L. MacEachern, W.L. Brown, M.F. Jarrold, M. Sosnowski, G. Takaoka, H. Usui, and I. Yamada, J. Vac. Sci. Technol. A9 (1991) p. 3105.

    Google Scholar 

  17. R.D. Richard, R.J. Markunas, G. Lucovsky, G.G. Fountain, A.N. Mansour, and D.V. Tsu, J. Vac. Sci. Technol. A3 (1985) p. 867; J.C. Barbour, H.J. Stein, and C.A. Outten, in Low Energy Ion Beam and Plasma Modification of Materials, edited by J.M.E. Harper, K. Miyake, J.R. McNeil, and S.M. Gorbatkin (Mater. Res. Soc. Symp. Proc. 223, Pittsburgh, PA, 1991) p. 91.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picraux, S.T., Chason, E. & Mayer, T.M. Ion-Assisted Surface Processing of Electronic Materials. MRS Bulletin 17, 52–57 (1992). https://doi.org/10.1557/S0883769400041476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400041476

Navigation